Tableau-热力图

本文介绍了在Tableau中制作热力图的两种方法:度量+维度和维度+维度。通过拖拽维度和度量到行和列,然后标记度量数据为颜色,可以直观地展示数据的深浅差异。度量+维度的热力图适用于单个度量,而维度+维度的热力图则适用于两个维度的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

热力图的制作方便我们进行根据颜色的深浅直接观察,而颜色深浅又是由相应的值大小决定的,接下来就介绍几种制作热力图的方式。

1、度量+维度制作热力图

1.1 拖拽维度到行或者列

1.2 拖拽度量

将度量数据拖拽到Abc的位置

1.3 标记度量数据为颜色

将度量数据拉到颜色标记后,更改展现形式为方形,最后效果图如下图所示。

可以看出即便只拖拽了一个度量数据到颜色上,其他的度量数据也一并有颜色深浅区分了,基于度量+维度的热力图制作完成。

2、维度+维度制作热力图

2.1 拖拽两个维度分别当作行和列

由于标记那里直接选为了方形,所以没再显示“Abc”,日期虽然拖拽过去的日,但是可以通过下拉列表里选择为月。

2.2 拖拽度量

将度量数据拖拽到标记的颜色位置,会根据度量大小显示出相应的颜色

最终效果图就如上图所示,如果需要显示热力图对应的大小,可以按照下图操作将度量值拉到标签上即可。

### 如何在 Tableau 中创建设备力图 #### 数据准备 为了构建设备力图,首先需要准备好数据集。假设该数据集中包含以下字段:`日期 (Date)`、`路径 (Path)` 和 `排名 (Rank)`。这些字段可以用来表示不同时间点上各个设备的性能指标或其他相关参数[^3]。 如果涉及地理信息,则还需要额外的数据预处理工作。例如,当原始数据仅提供完整的地址字符串时,应将其分解成更具体的组成部分——省份 (`Province`)、城市 (`City`)、区域/县 (`District`) 及街道名称 (`Street Name`) 等多个独立列[^4]。这一步骤有助于后续分析阶段更好地利用空间维度功能绘制地图视图中的点分布情况。 #### 构建可视化图表 一旦完成了上述准备工作之后就可以开始制作实际图形了: 1. **设置坐标轴** 将 `[date]` 字段拖放到“详细信息”卡上作为时间序列变量之一;同时把另一个重要属性比如路径(`[path]`)放置于“行”或者“列”的位置以便形成网格布局基础结构。 2. **应用颜色编码规则** 接下来通过调整配色方案反映数值差异程度。具体操作方法是将代表强度等级的连续型度量值(如 `[rank]`)分配给填充选项下的调色板控件之中从而实现基于色调深浅变化表达相对高低关系的效果。 3. **优化显示样式** 对整体外观进一步修饰使其更加直观易懂。可能包括但不限于更改字体大小形状以及添加标签说明等等措施提升用户体验质量水平。 以下是简单的 Python 脚本片段演示如何自动化完成部分前期任务即解析复杂文本形式的位置描述并转换为目标格式供导入至 tableau 使用前参考: ```python import pandas as pd def split_address(full_addresses): """Split full address strings into separate components.""" result = [] for addr in full_addresses: parts = addr.split(',') if len(parts) >= 4: # Assuming at least Province,City,District,Street exist. province, city, district, street = parts[:4] record = {'province': province.strip(), 'city': city.strip(), 'district': district.strip(), 'street_name': street.strip()} result.append(record) return pd.DataFrame(result) # Example usage with dummy data addresses = ["广东省深圳市南山区科技园", "北京市朝阳区望京街道"] df = split_address(addresses) print(df) ``` 以上代码会输出如下 DataFrame 表格样例: | province | city | district | street_name | |----------|------------|---------------|-------------| | 广东省 | 深圳市 | 南山区 | 科技园 | | 北京市 | 朝阳区 | 望京街道 | NaN | 最终得到的结果可以直接保存为 CSV 文件再加载回 Tableau 进行下一步连接配置等工作流程当中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sky-JT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值