文章目录
前言
简介: R 0 R_{0} R0,传染病学的一个重要指标,用于衡量一个群体中通过初始感染的个体直接感染的人数。
另外一个概念就是 R t R_{t} Rt, R t R_{t} Rt用于表示瞬时繁殖数,t代表时间窗口(下文会进行详细介绍),用来衡量在t这个时间窗口下对各个时间点的传染能力。
提示:以下是本篇文章正文内容,思想观点仅供参考
一、 R 0 R_{0} R0是什么?
介绍: R 0 R_{0} R0的定义在前言里面已经有所介绍,目前觉得可以应用的地方就在于一些传染病的传染率参数设置,比如最近流行的新冠肺炎,已经有研究说明了各种情况下的 R 0 R_{0} R0数值,确认这个数值后,依据其设置传染率即可。
二、 R t R_{t} Rt是什么?
通过一次亲身经历有幸接触到了这个医学界的专有名词,正好我的学习也跟第一部分的 R 0 R_{0} R0有关,于是通过这次经历拜读了一些论文,下面将把自己抓到的点和一些感悟写出来,章节安排是根据论文先后顺序。本人理解有限,原始论文链接放在文末,有兴趣的话大家可以点击链接通读全文。
1.2004年的论文
1.1 以往的缺陷
当只有发病时间时,大多研究者通过假设病例数随着时间呈指数级增长或拟合一个特定模型来总结有关流行病的假设来近似R。通过基于可能性的估计程序,可以从流行病曲线提供的发病日期观察推断“谁感染了谁”。这种存在缺点,首先是计算负担巨大,还有就是需要考虑所有可能的感染网络。
1.2 本文改进
使用成对的病例而不是整个感染网络,这样既获得了基于可能性的R估计值,又避免了计算问题。
1.3 具体步骤
w
τ
w_{τ}
wτ:生成间隔的概率分布,这个值是取决于从被感染者发病时间与感染者发病时间。
τ
=
t
i
−
t
j
\begin{aligned} τ=t_{i}-t_{j} \end{aligned}
τ=ti−tj
t
i
t_{i}
ti和
t
j
t_{j}
tj分别指i和j发病时的时间。
P
i
j
P_{ij}
Pij:病例i被病例j感染的概率/可能性,由病例i被任何其他病例k感染的可能性归一化。公式如下:
P
i
j
=
w
(
t
i
−
t
j
)
/
∑
i
!
=
k
w
(
t
i
−
t
k
)
\begin{aligned} P_{ij}=w(t_{i}-t_{j})/ \sum\limits_{i!=k}w(t_{i}-t_{k}) \end{aligned}
Pij=w(ti−tj)/i!=k∑w(ti−tk)
R
j
R_{j}
Rj:病例j的有效繁殖数,其值等于所有病例i的综合。公式如下:
R
j
=
∑
i
P
i
j
\begin{aligned} R_{j}=\sum\limits_{i}P_{ij} \end{aligned}
Rj=i∑Pij
2. 2013年的论文
2.1 2004年论文所示方案的缺陷
1、估计值是存在缺失情况的,时间t处的R值需要来自晚于t时间的发生率数据;
2、数据聚合时间步长较小时,R估计值在短时间内可能会有很大差异,从而产生大量负相关。
2.2 本文改进
能够使用早于时间t处的数据来预估t处的R值,研发出了一种通用且强大的工具来估计时变繁殖数量。
2.3 具体步骤
w
s
w_{s}
ws:生成间隔的概率分布,这个值是取决于从被感染者发病时间与感染者发病时间,即病例感染后的时间s。
I
t
I_{t}
It:时间步长t,或者说窗口时间为t时本窗口时间内的新增感染人数。
R
t
R_{t}
Rt:瞬时繁殖数,通过时间步长t产生的新感染数量
I
t
I_{t}
It比上时间t时感染个体的总传染性来估计。
R
t
c
R^c_t
Rtc:指实行措施后,特定个体在时间步长t时实际感染的继发病例数,需要注意的时,
R
t
c
R^c_t
Rtc只能在t时感染病例产生的继发病例被发现后,才可以算出来。
论文中为了区分
R
t
R_{t}
Rt与
R
t
c
R^c_t
Rtc,举了一个非常形象的例子,
R
t
c
R^c_t
Rtc相当于是2013年出生个体的实际寿命,而
R
t
R_{t}
Rt相当于是2013年出生个体的预测寿命。
论文中最终选用了
R
t
R_t
Rt来作为指标,原因有两个。其一,
R
t
R_t
Rt是唯一容易实时估计的繁殖数;其二,采取措施后
R
t
R_t
Rt会有一个明显的变化出现,而
R
t
c
R^c_t
Rtc在采取措施后变化相对平稳,不容易像
R
t
R_t
Rt那样容易观察。
在介绍计算
R
t
R_t
Rt的公式之前,首先引入截至时间t-1时的感染发生率之和为
∑
s
!
=
1
t
I
t
−
s
w
s
\sum\limits_{s!=1}^tI_{t-s}w_{s}
s!=1∑tIt−sws,由感染性函数
w
s
w_{s}
ws加权。
计算
R
t
R_t
Rt的公式如下:
R
t
=
E
[
I
t
]
/
∑
s
!
=
1
t
I
t
−
s
w
s
\begin{aligned} R_t=E[I_{t}]/\sum\limits_{s!=1}^tI_{t-s}w_{s} \end{aligned}
Rt=E[It]/s!=1∑tIt−sws
E
[
I
t
]
E[I_{t}]
E[It]:表示
I
t
I_{t}
It的数学期望,
I
t
−
s
I_{t-s}
It−s是本时间窗口t内假定时间步长为t-s时的新感染人数。
P
i
j
P_{ij}
Pij:病例i被病例j感染的概率/可能性,由病例i被任何其他病例k感染的可能性归一化。公式如下:
P
i
j
=
w
(
t
i
−
t
j
)
/
∑
i
!
=
k
w
(
t
i
−
t
k
)
\begin{aligned} P_{ij}=w(t_{i}-t_{j})/ \sum\limits_{i!=k}w(t_{i}-t_{k}) \end{aligned}
Pij=w(ti−tj)/i!=k∑w(ti−tk)
R
j
R_{j}
Rj:病例j的有效繁殖数,其值等于所有病例i的总和。公式如下:
R
j
=
∑
i
P
i
j
\begin{aligned} R_{j}=\sum\limits_{i}P_{ij} \end{aligned}
Rj=i∑Pij
3. 2019年论文
3.1 2013年论文所示方案的缺陷
1、在爆发早期或者对于不熟悉的传染病无法获得对序列间隔分布的估计;
2、其假设了所有病例都源于本地传播(第一例除外),没有考虑中间会有其他地方输入造成传染的情况。
3.2 本文改进
不再依赖先前对串行间隔的估计,而是继承了从直接估计串行间隔而来的已知索引对和次要情况的数据,并充分考虑了串行间隔中的相应不确定性,另外也支持输入性病例的处理。
3.3 具体步骤
Λ
t
\Lambda_t
Λt:指时间t时所有感染个体的总感染可能性,公式如下:
Λ
t
(
w
s
)
=
∑
s
=
1
t
(
I
t
−
s
l
o
c
a
l
+
I
t
−
s
i
m
p
o
r
t
e
d
)
w
s
=
∑
s
=
1
t
I
t
−
s
w
s
\begin{aligned} \Lambda_t(w_{s})=\sum\limits_{s=1}^t(I^{local}_{t-s}+I^{imported}_{t-s})w_{s}=\sum\limits_{s=1}^tI_{t-s}w_{s} \end{aligned}
Λt(ws)=s=1∑t(It−slocal+It−simported)ws=s=1∑tIt−sws
给定串行间隔分布
w
s
w_{s}
ws,截至上一个时间不长的事件总数的数据(
I
0
,
I
1
,
.
.
.
I
t
−
1
I_0,I_1,...I_{t-1}
I0,I1,...It−1)和瞬态复制数(
R
t
R_t
Rt),则时间t时本地感染病例的预期期望值为:
E
(
I
t
l
o
c
a
l
∣
I
0
,
I
1
,
.
.
.
I
t
−
1
)
=
R
t
Λ
t
(
w
s
)
\begin{aligned} E(I^{local}_t|I_0,I_1,...I_{t-1})=R_t\Lambda_t(w_{s}) \end{aligned}
E(Itlocal∣I0,I1,...It−1)=RtΛt(ws)
总结
2004年的论文可以作为 R t R_t Rt相关研究的基础,主要是已知了所有的感染数据,在此基础上进行计算;13年的论文在2004年的基础上着重改善的是不需要知道特定时间点之后感染的数据,根据这个时间点现在的数据即可进行计算;19年的论文则进一步优化,降低了计算 R t R_t Rt所需要的已知数据条件,并在传染过程中允许有群体外接触导致感染情况的出现。