
解题思路:
1.利用好方差=E(x^2)-E(x)^2
2.同时使用前缀和以及二分的知识来优化代码 减少复杂度
3.一定是连续的k个数字的方差是最小的 反证法理解:假设存在一种非连续的选取方式得到的方差更小。设这组有序数据为 a1≤a2≤⋯≤an ,若选取的 k 个非连续数字 b1,b2,⋯,bk(bi∈{aj})方差更小。不妨设其中两个数字 bs 和 bt 之间间隔了若干个数据,若将间隔中的某个数据替换其中一个(比如把较大的 bt 替换为间隔中较小的数据),新的数据组合可能会使整体数据更靠近平均值,从而使方差变小,这与假设非连续选取方差最小矛盾。
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int k,t;
long long a[100005], b[100005], s[100005], sq[100005];
inline double pow(double x) { return x*x; }
bool check(int m) {
memcpy(b, a, sizeof(long long)*(m+1));
sort(b+1, b+1+m);
for (int i=1; i<=m; i++)
s[i] = s[i-1]+b[i], sq[i] = sq[i-1]+b[i]*b[i];
for (int i=k; i<=m; i++)
if (double(sq[i]-sq[i-k])/k - pow(double(s[i]-s[i-k])/k) < t)
return true;
return false;
}
int get(int l, int r) {
int ans = -1;
while (l <= r) {
int m = (l+r)/2;
if (check(m))
r = (ans=m)-1; //check完之后 如果结果true 那么说明前m个数字中存在方差<T的组合
else // 那么令有边界减少1
l = m+1; // 否则 将左边界设置为原右边界+1 继续查找
}
return ans;
}
int main() {
int n;
cin>>n>>k>>t;
for (int i=1; i<=n; i++)
cin>>a[i];
cout<<get(k, n)<<'\n';
return 0;
}