蓝桥杯 成绩统计

解题思路:

1.利用好方差=E(x^2)-E(x)^2

2.同时使用前缀和以及二分的知识来优化代码 减少复杂度

3.一定是连续的k个数字的方差是最小的 反证法理解:假设存在一种非连续的选取方式得到的方差更小。设这组有序数据为 a1​≤a2​≤⋯≤an​ ,若选取的 k 个非连续数字 b1​,b2​,⋯,bk​(bi​∈{aj​})方差更小。不妨设其中两个数字 bs​ 和 bt​ 之间间隔了若干个数据,若将间隔中的某个数据替换其中一个(比如把较大的 bt​ 替换为间隔中较小的数据),新的数据组合可能会使整体数据更靠近平均值,从而使方差变小,这与假设非连续选取方差最小矛盾。

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

int k,t;
long long a[100005], b[100005], s[100005], sq[100005];

inline double pow(double x) { return x*x; }

bool check(int m) {
  memcpy(b, a, sizeof(long long)*(m+1));
  sort(b+1, b+1+m);
  for (int i=1; i<=m; i++)
    s[i] = s[i-1]+b[i], sq[i] = sq[i-1]+b[i]*b[i];
  for (int i=k; i<=m; i++)
    if (double(sq[i]-sq[i-k])/k - pow(double(s[i]-s[i-k])/k) < t)
      return true;
  return false;
}

int get(int l, int r) {
  int ans = -1;
  while (l <= r) {
    int m = (l+r)/2;
    if (check(m))
      r = (ans=m)-1;     //check完之后 如果结果true 那么说明前m个数字中存在方差<T的组合
    else                 //  那么令有边界减少1
      l = m+1;           //  否则 将左边界设置为原右边界+1 继续查找
  }
  return ans;
}

int main() {
  int n;
  cin>>n>>k>>t;
  for (int i=1; i<=n; i++)
    cin>>a[i];
  cout<<get(k, n)<<'\n';

  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值