代码参考【2024年蓝桥杯C/C++ A组AK代码带写题解】https://www.bilibili.com/video/BV1cp421X77W?vd_source=60db898c87848c34d530dd8bf2555278
题目
题目分析:
有n个同学,有相应的n个成绩,小蓝要从这里面选前x个同学,使得k个同学的方差小于T,问x至少为多少。
前提知识:方差提供了衡量数据在平均值附近波动程度的方法:方差越大,数据分布越分散,波动越大;方差越小,数据越集中,波动越小。
由题意可知,k个同学是在x中随机的,没有顺序的,那么就是从x中要挑出最适合的k个同学,使得他们的方差是最小的,而方差是当数据越集中就会越小的,所以可以把这x个同学的成绩进行排序,这样就能让成绩集中,更好能计算了。
因为n很大,如果让x从零遍历到n的话就会使得编译时间延长,所以我们可以采用二分法,先找x的大概位置,如果前x里面找不到小于T的,说明数据还是太分散了,还需要扩大数据,即x在n/2~n这个范围里面。
因为要对前x个排序,所以为了不让整个数组a[n]被打乱,可以建一个数组b,存放前x个数,进行排序。
很巧妙的点,排序后的数组,平方和遍历就可以得到最优解了,不用到处去匹配。
对于是否<T的判断,可以把方程式解开,
令ans=-1,这样找不到时就直接输出-1,不用if,else了
题目变量大小要求:
n, k,T可以用int表示,但k^2*T在大约2^64去了,用long longl类型表示,为了防止计算v的时候溢位,所以将a[n],b[n]都规定为long long类型。
因为k,T都是int类型,所以用1ll强制转换它们的乘积。
用vector容器vi,vi2分别来存放前i项之和,前i项积的和。
用vi2[i] -vi2[i-k]来表示连续k项积的和,例子如下图
vi同理,这样就可以很方便的表示连续k个的和了。
如果有<k^2*T的,则再往前找,再返回找有没有更小的x.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,k;
const int N = 1e5+10;
ll T, k2T;
ll a[N], b[N];
int check(int x){
if(x<k)return 0;
for(int i = 0;i<x;i++)b[i] = a[i];
sort(b, b+x);
vector<ll> vi(x+1, 0), vi2(x+1, 0);
for(int i = 0;i<x;i++){
vi[i+1] = vi[i] + b[i];
vi2[i+1] = vi2[i] + b[i]*b[i];
}
for(int i = k;i<=x;i++){
ll judge = k*(vi2[i] -vi2[i-k]) - (vi[i]-vi[i-k])*(vi[i]-vi[i-k]);
if(judge<k2T)return 1;
}
return 0;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>k>>T;
k2T = 1ll*k*k*T;
for(int i=0;i<n;i++)cin>>a[i];
int l=0,ans = -1, r = n;
int mid = 0;
while(r>=l){
mid = (l + r)/2;
if(check(mid)){
ans = mid;
r = mid-1;
}
else l = mid+1;
}
cout<<ans;
return 0;
}