生日蛋糕
这个题和分蛋糕不一样呀,这是条dfs的题目来的
这是条好经典的老题目呀,DFS+枚举+多重剪枝应有尽有。想起来难度还是挺大的,真的让人回味无穷。借助这条题目来回顾一下dfs的一些注意的地方
总时间限制:
5000ms
内存限制:
65536kB
描述
7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)
输入
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
输出
仅一行,是一个正整数S(若无解则S = 0)。
样例输入
100
2
样例输出
68
提示
圆柱公式
体积V = πR2H
侧面积A’ = 2πRH
底面积A = πR2
这条题目的话还是算有点难度的,它突出了DFS剪枝的重要性
剪枝的算法也在很多的人机对战棋类游戏当中运用到。不剪行不行?
打个比方:
围棋比赛当中,2步
36
5
364
365^{364}
365364
当下的计算机还没有那么的厉害。因此剪枝是DFS很重要的东西,也是比较难想到的地方。
一般而言,对于深度优先搜索的题目
- 枚举什么东西(枚举每一层可能的h和r)
- 如何确定搜索的范围(底层蛋糕的最大可能半径和最大可能高度)
- 搜索的顺序(从下往上搭建)
- 如何剪枝???
经过上面分析代码的框架应该来说有了个大体,但是要真正完成这条题目还有很多地方需要考虑哦。
剪枝1:搭建过程中发现已建好的面积已经超过目前求得的最优表面积,或者预见到搭完后面积一定会超过目前最优表面积,则停止搭建(最优性剪枝)
剪枝2:搭建过程中预见到再往上搭,高度已经无法安排,或者半径已经无法安排,则停止搭建(可行性剪枝)
剪枝3:搭建过程中发现还没搭的那些层的体积,一定会超过还缺的体积,则停止搭建(可行性剪枝)
剪枝4:搭建过程中发现还没搭的那些层的体积,最大也到不了还缺的体积,则停止搭建(可行性剪枝)
我们可以看到有的剪枝是非常有预见性的,加上这些剪枝之后,才能通过这条题目。 ,剪枝的设计不是唯一的。
//by Gary
#include <cmath>
#include <iostream>
using namespace std;
int N,M;
int minArea=(1<<30);
int area=0;//当前
void dfs(int v,int n,int r,int h)//n层去凑体积为v,允许最大高度为h,最大半径为r
{
if(n==0)
{
if(v)//还有体积剩余
return ;
else{
minArea=min(area,minArea);
return ;
}
}
if(v<=0)return ;
//遍历半径和高度(枚举)
for(int rr=r;rr>=n;rr--){
//可行性剪枝,剩余半径不足分配
if(rr-1<n-1) continue;
//刚好是第M层
if(n==M)
area=rr*rr;
for(int hh=h;hh>=n;hh--){
//同上不足分配
if(hh-1<n-1) continue;
//最优性剪枝
if(area+2*rr*hh>=minArea||(area+2*rr*hh+(n-1)*n*(2*n-1)/3)>minArea)
continue;
//剩下的两个可行性剪枝
if((n-1)*n/2*(n-1)*n/2>(v-rr*rr*hh))
continue;
long long leftV=0;
for(long long t=1;t<=(n-1);++t)
leftV+=(rr-t)*(rr-t)*(hh-t);
if(leftV<(long long)(v-rr*rr*hh))
continue;
area+=2*rr*hh;
dfs(v-rr*rr*hh,n-1,rr-1,hh-1);
area-=2*rr*hh;
}
}
}
int main()
{
cin>>N>>M;
//最大半径
int maxR=sqrt(N);
int maxH=N;
dfs(N,M,maxR,maxH);
if(minArea==(1<<30))
cout<<0<<endl;
else cout<<minArea<<endl;
return 0;
}
学会程序和算法,走遍天下都不怕
哈尔滨雪乡