生日蛋糕

生日蛋糕

这个题和分蛋糕不一样呀,这是条dfs的题目来的

这是条好经典的老题目呀,DFS+枚举+多重剪枝应有尽有。想起来难度还是挺大的,真的让人回味无穷。借助这条题目来回顾一下dfs的一些注意的地方

总时间限制:
5000ms
内存限制:
65536kB

描述
7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)
输入
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
输出
仅一行,是一个正整数S(若无解则S = 0)。
样例输入

100
2

样例输出

68

提示
圆柱公式
体积V = πR2H
侧面积A’ = 2πRH
底面积A = πR2

这条题目的话还是算有点难度的,它突出了DFS剪枝的重要性
剪枝的算法也在很多的人机对战棋类游戏当中运用到。不剪行不行?
打个比方:
围棋比赛当中,2步
36 5 364 365^{364} 365364
当下的计算机还没有那么的厉害。因此剪枝是DFS很重要的东西,也是比较难想到的地方。

一般而言,对于深度优先搜索的题目

  1. 枚举什么东西(枚举每一层可能的h和r)
  2. 如何确定搜索的范围(底层蛋糕的最大可能半径和最大可能高度)
  3. 搜索的顺序(从下往上搭建)
  4. 如何剪枝???

经过上面分析代码的框架应该来说有了个大体,但是要真正完成这条题目还有很多地方需要考虑哦。

剪枝1:搭建过程中发现已建好的面积已经超过目前求得的最优表面积,或者预见到搭完后面积一定会超过目前最优表面积,则停止搭建(最优性剪枝)

剪枝2:搭建过程中预见到再往上搭,高度已经无法安排,或者半径已经无法安排,则停止搭建(可行性剪枝)

剪枝3:搭建过程中发现还没搭的那些层的体积,一定会超过还缺的体积,则停止搭建(可行性剪枝)

剪枝4:搭建过程中发现还没搭的那些层的体积,最大也到不了还缺的体积,则停止搭建(可行性剪枝)

我们可以看到有的剪枝是非常有预见性的,加上这些剪枝之后,才能通过这条题目。 ,剪枝的设计不是唯一的。

//by Gary
#include <cmath>
#include <iostream>
using namespace std;

int N,M;
int minArea=(1<<30);
int area=0;//当前

void dfs(int v,int n,int r,int h)//n层去凑体积为v,允许最大高度为h,最大半径为r
{
    if(n==0)
    {
        if(v)//还有体积剩余
            return ;
        else{
            minArea=min(area,minArea);
            return ;
        }
    }
    if(v<=0)return ;

    //遍历半径和高度(枚举)
    for(int rr=r;rr>=n;rr--){
        //可行性剪枝,剩余半径不足分配
        if(rr-1<n-1) continue;
        //刚好是第M层
        if(n==M)
            area=rr*rr;
        for(int hh=h;hh>=n;hh--){
            //同上不足分配
            if(hh-1<n-1) continue;
            //最优性剪枝
            if(area+2*rr*hh>=minArea||(area+2*rr*hh+(n-1)*n*(2*n-1)/3)>minArea)
                continue;
            //剩下的两个可行性剪枝
            if((n-1)*n/2*(n-1)*n/2>(v-rr*rr*hh))
            continue;
            long long leftV=0;
            for(long long t=1;t<=(n-1);++t)
                leftV+=(rr-t)*(rr-t)*(hh-t);
        if(leftV<(long long)(v-rr*rr*hh))
            continue;
        area+=2*rr*hh;
        dfs(v-rr*rr*hh,n-1,rr-1,hh-1);
        area-=2*rr*hh;
        }

    }
}

int main()

{
    cin>>N>>M;
    //最大半径
    int maxR=sqrt(N);
    int maxH=N;
    dfs(N,M,maxR,maxH);
    if(minArea==(1<<30))
        cout<<0<<endl;
    else cout<<minArea<<endl;
    return 0;
}

学会程序和算法,走遍天下都不怕
哈尔滨雪乡哈尔滨雪乡

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值