前言
数学,可是它懵逼双眼——《学 diss math》2023.6.6。
~
福建大夏天气太热有感
汤谷黑齿北,一木十金乌。
羿射九日洛,夸父自追逐。
感乎东极外,扶桑花正舒。
彭者望其背,万里又何如。
知我非得者,大道无长青。
少年凌云志,意气四海行。
亟欲剑阁试,弓攥矢尤腥。
归尘亦狂酒,谈笑死生情。
老大历诸事,岁岁不年轻。
心景明复灭,天光古希窥。
入世尚自哂,出世何宏图。
拳少八极力,文输诸葛庐。
冷铁多卷刃,言语总低俗。
不期堂前燕,春来同君语。
但求夜寐时,梦里无穷困。
对等
定义:对等、基数
1 ) \boldsymbol {1)} 1)若 A , B A,B A,B是非空集合,且存在双射 φ : A → B \varphi:A\rightarrow B φ:A→B,则称 A \boldsymbol A A与 B \boldsymbol B B对等,记为 A ∼ B ‾ \underline{A\sim B} A∼B.
2 ) \boldsymbol {2)} 2)若 A , B A,B A,B对等,则称 A , B A,B A,B具有相同的基数,记为 A = = B = \overset{=}{A}=\overset{=}{B} A==B=;
\quad 若 A , B A,B A,B不对等,但 ∃ B ∗ ⊊ B \exists B^* \subsetneq B ∃B∗⊊B, s . t . A ∼ B ∗ s.t. ~A\sim B^* s.t. A∼B∗,则称 A A A比 B B B有较小的基数 ( B B B比 A A A有较大的基数),记为 A = < B = ( \overset{=}{A}<\overset{=}{B}~( A=<B= (或 B = > A = ) \overset{=}{B}>\overset{=}{A}) B=>A=).
性质
定理1
任何集合 A , B , C A,B,C A,B,C,均有
(1) A ∼ A A\sim A A∼A (自反性);
(2)若 A ∼ B A\sim B A∼B,则 B ∼ A B\sim A B∼A (对称性);
(3)若 A ∼ B , B ∼ C A\sim B,B\sim C A∼B,B∼C,则 A ∼ C A\sim C A∼C (传递性).
- 证明:若
∃
A
∗
⊆
A
\exists A^* \subseteq A
∃A∗⊆A,
s
.
t
.
B
∼
A
∗
s.t. ~B\sim A^*
s.t. B∼A∗,那么
B
=
≤
A
=
\overset{=}{B}\le\overset{=}{A}
B=≤A=.
1)当 A , B A,B A,B不对等时,显然 A ∗ ≠ A A^* \ne A A∗=A,于是有 B = < A = \overset{=}{B} < \overset{=}{A} B=<A=;
2)当 A A A和 B B B对等时,根据传递性,有 A ∗ ∼ A A^*\sim A A∗∼A,显然 B = = A = \overset{=}{B} = \overset{=}{A} B==A=,
故, B = ≤ A = \overset{=}{B}\le\overset{=}{A} B=≤A=。
定理2:伯恩斯坦(Bernstein)定理
设 A A A和 B B B是两个非空集合。若 ∃ A ∗ ⊆ A , B ∗ ⊆ B \exists A^* \subseteq A,B^* \subseteq B ∃A∗⊆A,B∗⊆B, s . t . B ∼ A ∗ , A ∼ B ∗ s.t. ~B\sim A^*,A\sim B^* s.t. B∼A∗,A∼B∗,那么 A ∼ B A\sim B A∼B.
-
证明:根据假设,存在双射 φ 1 : A → B 1 ( B 1 ⊆ B ) \varphi_1:A\rightarrow B_1(B_1\subseteq B) φ1:A→B1(B1⊆B) 及 φ 2 : B → A 1 ( A 1 ⊆ A ) \varphi_2:B\rightarrow A_1(A_1\subseteq A) φ2:B→A1(A1⊆A)。
因为 B 1 ⊆ B B_1\subseteq B B1⊆B,记 A 2 = φ 2 ( B 1 ) A_2=\varphi_2(B_1) A2=φ2(B1),显然, A 2 ⊆ A 1 A_2\subseteq A_1 A2⊆A1,并且 φ 2 \varphi_2 φ2也是 B 1 B_1 B1到 A 2 A_2 A2上的双射,于是有
A ∼ φ 1 B 1 ∼ φ 2 A 2 ( A 2 ⊆ A ) A \overset{\varphi_1}{\sim} B_1 \overset{\varphi_2}{\sim} A_2 ~ (A_2\subseteq A) A∼φ1B1∼φ2A2 (A2⊆A)即,存在复合映射 φ 2 ∘ φ 1 = φ : A → A 2 \varphi_2\circ\varphi_1=\varphi:A\rightarrow A_2 φ2∘φ1=φ:A→A2,使得 A ∼ φ A 2 A \overset{\varphi}{\sim} A_2 A∼φA2.
记 A 3 = φ ( A 1 ) A_3=\varphi(A_1) A3=φ(A1),同理,有 A 3 ⊆ A 2 A_3\subseteq A_2 A3⊆A2,反复进行这样的操作,可得一列子集
A ⊇ A 1 ⊇ A 2 ⊇ ⋯ ⊇ A n ⊃ ⋯ A\supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supset \cdots A⊇A1⊇A2⊇⋯⊇An⊃⋯将集合 A , A 1 A,A_1 A,A1分解为互不相交的集合的并集,有
{ A = ( A − A 1 ) ∪ ( A 1 − A 2 ) ∪ ⋯ ∪ ( A n − A n + 1 ) ∪ ⋯ ∪ D A 1 = ( A 1 − A 2 ) ∪ ⋯ ∪ ( A n − A n + 1 ) ∪ ⋯ ∪ D 1 \left\{ \begin{aligned} A &= (A-A_1)\cup (A_1-A_2)\cup \cdots \cup (A_n - A_{n+1}) \cup \cdots \cup D \\ A_1 &= (A_1-A_2)\cup \cdots \cup (A_n - A_{n+1}) \cup \cdots \cup D_1 \end{aligned} \right. {AA1=(A−A1)∪(A1−A2)∪⋯∪(An−An+1)∪⋯∪D=(A1−A2)∪⋯∪(An−An+1)∪⋯∪D1其中,
{ D = A ∩ A 1 ∩ A 2 ∩ ⋯ ∩ A n ∩ ⋯ D 1 = A 1 ∩ A 2 ∩ ⋯ ∩ A n ∩ ⋯ \left\{ \begin{aligned} D &= A \cap A_1 \cap A_2 \cap \cdots \cap A_n \cap \cdots \\ D_1 &= A_1 \cap A_2 \cap \cdots \cap A_n \cap \cdots \end{aligned} \right. {DD1=A∩A1∩A2∩⋯∩An∩⋯=A1∩A2∩⋯∩An∩⋯显然, D = A ∩ D 1 D=A\cap D_1 D=A∩D1,因为 A ⊇ A i ( i = 1 , 2 , ⋯ ) A\supseteq A_i(i=1,2,\cdots) A⊇Ai(i=1,2,⋯),故 D = D 1 D=D_1 D=D1.
又因为,映射 φ \varphi φ是 A i − 1 − A i A_{i-1}-A_i Ai−1−Ai上到 A i + 1 − A i + 2 A_{i+1}-A_{i+2} Ai+1−Ai+2的双射 ( i = 1 , 2 , ⋯ ) (i=1,2,\cdots) (i=1,2,⋯),故
A i − 1 − A i ∼ A i + 1 − A i + 2 A_{i-1}-A_i \sim A_{i+1}-A_{i+2} Ai−1−Ai∼Ai+1−Ai+2于是,有
A = ( A − A 1 ) ∪ ( A 1 − A 2 ) ⋯ ( A 2 n − A 2 n + 1 ) ∪ ( A 2 n + 1 − A 2 n + 2 ) ⋯ ∪ D A 1 = ( A 2 − A 3 ) ∪ ( A 1 − A 2 ) ⋯ ( A 2 n + 2 − A 2 n + 3 ) ∪ ( A 2 n + 1 − A 2 n + 2 ) ⋯ ∪ D \begin{aligned} A &= (A-A_1)\cup (A_1-A_2) \cdots (A_{2n} - A_{2n+1}) \cup (A_{2n+1} - A_{2n+2}) \cdots \cup D \\ A_1 &= (A_2-A_3)\cup (A_1-A_2) \cdots (A_{2n+2} - A_{2n+3}) \cup (A_{2n+1} - A_{2n+2}) \cdots \cup D \end{aligned} AA1=(A−A1)∪(A1−A2)⋯(A2n−A2n+1)∪(A2n+1−A2n+2)⋯∪D=(A2−A3)∪(A1−A2)⋯(A2n+2−A2n+3)∪(A2n+1−A2n+2)⋯∪D故, A ∼ A 1 ∼ B A\sim A_1 \sim B A∼A1∼B,推得 A ∼ B A\sim B A∼B.
-
反证法
假设 A , B A,B A,B不对等,且 A = > B = \overset{=}{A}>\overset{=}{B} A=>B=,则
不存在 B ∗ ⊆ B B^* \subseteq B B∗⊆B,使得 B ∗ ∼ A B^* \sim A B∗∼A,与条件矛盾,
故, A ∼ B A\sim B A∼B.
总结
要证明集合为可数集,一般思路就是证明集合与自然数集对等。
但可数集,有时也指代有限集和无限可数集,下面是该情况的例题。
例题
设 f : [ 0 , 1 ] → R f:[0,1]\rightarrow R f:[0,1]→R 满足对任意的正整数 n n n,任意的 x 1 , x 2 , ⋯ , x n ∈ [ 0 , 1 ] ( x i ≠ x j ) x_1,x_2,\cdots,x_n \in [0,1]~(x_i\ne x_j) x1,x2,⋯,xn∈[0,1] (xi=xj) 均有 ∣ f ( x 1 ) + f ( x 2 ) + . . . f ( x n ) ∣ ≤ M |f(x_1)+f(x_2)+...f(x_n)|\le M ∣f(x1)+f(x2)+...f(xn)∣≤M,其中 M M M为常数,则证明: { x ∈ [ 0 , 1 ] ∣ f ( x ) ≠ 0 } \{x\in [0,1] \mid f(x)≠0\} {x∈[0,1]∣f(x)=0}为可数集
注:题中的“可数”指至多可数。
-
证明:根据题意,不妨记 A k = { x ∈ [ 0 , 1 ] ∣ ∣ f ( x ) ∣ > 1 k } A_k=\{x\in [0,1] \mid |f(x)|>\frac 1k \} Ak={x∈[0,1]∣∣f(x)∣>k1},显然有
{ x ∈ [ 0 , 1 ] ∣ f ( x ) ≠ 0 } = ⋃ k = 1 ∞ A k \{x\in [0,1] \mid f(x)≠0\} = \bigcup_{k=1}^\infty A_k {x∈[0,1]∣f(x)=0}=k=1⋃∞Ak 假设 ∃ m > 0 , m ∈ N \exists m > 0 ,m\in \mathbb N ∃m>0,m∈N,使得集合 A m A_m Am为不可数集,则 A m A_m Am存在可列子集 A m ∗ = { x 1 , x 2 , ⋯ , x n , ⋯ } A_m^* = \{ x_1, x_2, \cdots, x_n, \cdots \} Am∗={x1,x2,⋯,xn,⋯},其中必有
x ∈ A m ∗ : f ( x ) > 1 m ∨ f ( x ) < − 1 m x\in A_m^* : f(x)>\frac 1m \vee f(x)<-\frac1m x∈Am∗:f(x)>m1∨f(x)<−m1于是,
1 ◯ {\textcircled{\small {1} } } 1◯若 A m ∗ A_m^* Am∗中存在无限个元素 x x x,使得 f ( x ) > 1 m f(x)>\frac1m f(x)>m1,
显然,对于 A m ∗ A_m^* Am∗的可列子集 S = { x ∈ A m ∗ : f ( x ) > 1 m } S=\{ x\in A_m^*: f(x)>\frac1m \} S={x∈Am∗:f(x)>m1},不满足 ∃ M > 0 , ∀ x i ∈ S , ∣ ∑ i = 0 n f ( x i ) ∣ < M \exists M>0,\forall x_i\in S, |\sum_{i=0}^nf(x_i)|<M ∃M>0,∀xi∈S,∣∑i=0nf(xi)∣<M;2 ◯ {\textcircled{\small {2} } } 2◯若 A m ∗ A_m^* Am∗中存在有限个元素 x x x,使得 f ( x ) > 1 m f(x)>\frac1m f(x)>m1,
则 A m ∗ A_m^* Am∗中存在无限个元素 x x x,使得 f ( x ) < − 1 m f(x)<-\frac1m f(x)<−m1时,同理,结论不成立;故, A m ∗ A_m^* Am∗中存在有限个元素 x x x,使得 ∣ f ( x ) ∣ > 1 m |f(x)|>\frac1m ∣f(x)∣>m1,即 ∀ k ∈ N + , A k \forall k\in \mathbb N^+, A_k ∀k∈N+,Ak为有限集, ⋃ k = 1 ∞ A k \bigcup_{k=1}^\infty A_k ⋃k=1∞Ak是可数集。
所以, { x ∈ [ 0 , 1 ] ∣ f ( x ) ≠ 0 } \{x\in [0,1] \mid f(x)≠0\} {x∈[0,1]∣f(x)=0}为可数集