【高等代数】第一章:多项式部分【2】

本文深入探讨了复数系和实数系中多项式的因式分解,从代数基本定理出发,阐述了复数系多项式因式分解定理和实系数多项式因式分解定理。通过一系列定理和推论,如高斯引理、艾森斯坦判别法,揭示了有理系数多项式的性质,以及如何在实数域和复数域中进行独特分解。此外,还介绍了本原多项式、有理系数多项式的整数分解,并探讨了多元多项式和对称多项式的概念及其特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

数学学废了,日子都没了。

        \qquad~~~~~~~        近学有感(二)
二三年三月二十三日作        ~~~~~~       马元
杨柳最恨此西风,日暖兹始挑冷声。
难会故友飞书去,计较几时沂水春。

        \qquad~~~~~~~        近学有感(三)
二三年三月二十三日作        ~~~~~~       马元
芳华恰似东流水,开时绵绵谢纷纷。
红丝叨唠催人旧,犹忆曾经折花人。

本专题为基础概念以及定理推论的证明。


复数系与实数系多项式的因式分解

\quad

代数基本定理

每个次数 ≥ 1 \ge 1 1的复系数多项式在复数域中有一根。

  • ​ 利用根与一次因式的关系,代数基本定理可以等价地叙述为“每个次数 ≥ 1 \ge 1 1的复系数多项式在复数域上一定有一个一次因式”。

    ​ 由此可知。在复数域上,所有次数大于1的多项式都是可约的。即,在复数域上,不可约多项式只有一次多项式

注:代数基本定理肯定了 n n n次方程有 n n n个复根,但是并没有给出根的一个具体求法。

\quad

复数系多项式因式分解定理

每个次数 ≥ 1 \ge 1 1的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积。因此,复系数多项式具有标准分解式
f ( x ) = a ( x − α n ) r n ( x − α n − 1 ) r n − 1 ⋯ ( x − α 1 ) r 1 f(x) = a (x-\alpha_n)^{r_n} (x-\alpha_{n-1})^{r_{n-1}} \cdots (x-\alpha_1)^{r_1} f(x)=a(xαn)rn(xαn1)rn1(xα1)r1
其中 α 1 , ⋯   , α n − 1 , α n \alpha_1,\cdots ,\alpha_{n-1},\alpha_n α1,,αn1,αn是不同的复数, r 1 , ⋯   , r n − 1 , r n r_1,\cdots,r_{n-1},r_n r1,,rn1,rn是正整数,标准分解式说明了每个 n n n次复系数多项式恰有 n n n个复根(重根按重数计算)。

\quad

实系数多项式因式分解定理

基本事实

如果 α \alpha α是实系数多项式 f ( x ) f(x) f(x)的复根,那么 α \alpha α的共轭复根 α ‾ \overline{\alpha} α也是 f ( x ) f(x) f(x)的根。

  • f ( x ) = ∑ i = 0 n a n x n f(x)=\sum_{i=0}^n a_n x^n f(x)=i=0nanxn,其中 a i a_i ai均为实数。由代数基本定理, f ( x ) f(x) f(x)有一复根 α \alpha α,则
    f ( α ) = a n α n + a n − 1 α n − 1 + ⋯ + a 0 = 0 f(\alpha) = a_n \alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_0 = 0 f(α)=anαn+an1αn1++a0=0
    等式两边同时取共轭数,有
    0 = f ( α ) ‾ = a n α n ‾ + a n − 1 α n − 1 ‾ + ⋯ + a 1 α ‾ + a 0 = a n α ‾ n + a n − 1 α ‾ n − 1 + ⋯ + a 1 α ‾ + a 0 = f ( α ‾ ) 0 = \overline{f(\alpha)} = a_n \overline{\alpha^n} + a_{n-1} \overline{\alpha^{n-1}} + \cdots + a_1 \overline{\alpha} + a_0 = a_n \overline{\alpha}^n + a_{n-1} \overline{\alpha}^{n-1} + \cdots + a_1 \overline{\alpha} + a_0 = f(\overline{\alpha}) 0=f(α)=anαn+an1αn1++a1α+a0=anαn+an1αn1++a1α+a0=f(α)
    所以, α ‾ \overline{\alpha} α也是 f ( x ) f(x) f(x)的根。

定理

每个次数 ≥ 1 \ge 1 1的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积。

  • (归纳法)

    ①定理对一次多项式显然成立;

    ②假设定理对次数 ≤ n \le n n的多项式均成立,则
    \quad f ( x ) f(x) f(x) n n n次实系数多项式。由代数基本定理, f ( x ) f(x) f(x)有一复数根 α \alpha α。如果 α \alpha α是实数,那么
    f ( x ) = ( x − α ) f 1 ( x ) f(x) = (x-\alpha)f_1(x) f(x)=(xα)f1(x)
    其中 f 1 ( x ) f_1(x) f1(x) n − 1 n-1 n1次实系数多项式。
    \quad 如果 α \alpha α不是实数,那么 α ‾ \overline{\alpha} α也是 f ( x ) f(x) f(x)的根且 α ‾ ≠ α \overline{\alpha}\ne\alpha α=α。于是
    f ( x ) = ( x − α ) ( x − α ‾ ) f 2 ( x ) f(x) = (x-\alpha)(x-\overline{\alpha})f_2(x) f(x)=(xα)(xα)f2(x)
    显然 ( x − α ) ( x − α ‾ ) = x 2 − ( α + α ‾ ) x + α α ‾ (x-\alpha)(x-\overline{\alpha})=x^2-(\alpha+\overline{\alpha})x + \alpha\overline{\alpha} (xα)(xα)=x2(α+α)x+αα是实系数二次不可约多项式。从而, f 2 ( x ) f_2(x) f2(x) n − 2 n-2 n2次实系 数多项式。
    \quad 由归纳假设, f 1 ( x ) f_1(x) f1(x) f 2 ( x ) f_2(x) f2(x)可以分解成一次与二次不可约多项式的乘积,因此 f ( x ) f(x) f(x)也可以分解成一次与 二次不可约多项式的乘积。
    \quad

由此,实系数多项式具有标准分解式
f ( x ) = a ( x − c 1 ) l 1 ⋯ ( x − c s ) l s ⋅ ( x 2 + p 1 x + q 1 ) k 1 ⋯ ( x 2 + p r x + q r ) k r \begin{aligned} f(x)&= a (x-c_1)^{l_1} \cdots (x-c_s)^{l_s} \\ &\cdot (x^2+p_1x+q_1)^{k_1} \cdots (x^2+p_r x+q_r)^{k_r} \\ \end{aligned} f(x)=a(xc1)l1(xcs)ls(x2+p1x+q1)k1(x2+prx+qr)kr
其中 c 1 , ⋯   , c s , p 1 , ⋯   , p r , q 1 , ⋯   , q r c_1,\cdots,c_s,p_1,\cdots,p_r,q_1,\cdots,q_r c1,,cs,p1,,pr,q1,,qr全是实数, l 1 , ⋯   , l s , k 1 , ⋯   , k r l_1,\cdots,l_s,k_1,\cdots,k_r l1,,ls,k1,,kr是正整数,并且 x 2 + p i x + q i ( i = 1 , 2 , ⋯   , r ) x^2+p_i x+q_i(i=1,2,\cdots,r) x2+pix+qi(i=1,2,,r)是不可约的,也就是适合条件 p i 2 − 4 q i < 0 , i = 1 , 2 , ⋯   , r p_i^2-4q_i < 0,i=1,2,\cdots,r pi24qi<0,i=1,2,,r


有理系数多项式

\quad
\quad 根据因式分解定理,我们有每个次数 ≥ 1 \ge 1 1的有理系数多项式都能唯一地分解成不可约的有理系数多项式的乘积
\quad 判断一个有理系数多项式是否可约不是一个容易解决的问题,这一点是有理数域与实数域、复数域不同的。在复数域上只有一次多项式是不可约的,而在实数域上不可约多项式有一次多项式和某些二次多项式。
\quad

本原多项式

如果一个非零的整系数多项式   g ( x ) = b n x n + b n − 1 x n − 1 + ⋯ + b 0   ~g(x)=b_nx^n + b_{n-1}x^{n-1} + \cdots + b_0~  g(x)=bnxn+bn1xn1++b0 的系数   b n , b n − 1 , ⋯   , b 0   ~b_n,b_{n-1},\cdots,b_0~  bn,bn1,,b0 没有异于 ± 1 \pm 1 ±1的公因子,即各系数之间互素,它就被称为本原多项式。

任何一个有理系数多项式 f ( x ) f(x) f(x)都可以表示成一个有理数 r r r与一个本原多项式 g ( x ) g(x) g(x)的乘积,即
f ( x ) = r   g ( x ) f(x) = r~g(x) f(x)=r g(x)

上述表示法除了一个正负号是唯一的。

即,如果有理系数多项式 f ( x ) = r g ( x ) = r 1 g 1 ( x ) f(x)=rg(x)=r_1g_1(x) f(x)=rg(x)=r1g1(x),其中 g ( x ) , g 1 ( x ) g(x),g_1(x) g(x),g1(x)都是本原多项式,那么必有
r = ± r 1 ,   g = ± g 1 r=\pm r_1, ~g=\pm g_1 r=±r1, g=±g1

\quad

定理(1):高斯引理

两个本原多项式的乘积还是本原多项式

  • (反证法)

    ​ 设
    f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 , g ( x ) = b m x m + b m − 1 x m − 1 + ⋯ + b 0 f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \\ g(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0 f(x)=anxn+an1xn1++a0,g(x)=bmxm+bm1xm1++b0
    是两个本原多项式,而
    h ( x ) = f ( x ) g ( x ) = d n + m x n + m + d n + m − 1 x n + m − 1 + ⋯ + d 0 h(x) = f(x)g(x) = d_{n+m} x^{n+m} + d_{n+m-1} x^{n+m-1} + \cdots + d_0 h(x)=f(x)g(x)=dn+mxn+m+dn+m1xn+m1++d0
    是他们的乘积。

    ​ 假设 h h h不是本原多项式,即 h h h的系数 d n + m , d n + m − 1 , ⋯   , d 0 d_{n+m},d_{n+m-1},\cdots,d_0 dn+m,dn+m1,,d0有一异于 ± 1 \pm 1 ±1的公因子,那么就至少有一个素数 p p p能整除 h h h的每个系数。

    ​ 因为 f f f是本原多项式,则 p p p不能整除 f f f的每个系数。令 a i a_i ai是第一个不能被 p p p整除的系数,即
    p ∣ a 0 , ⋯   , p ∣ a i − 1 , p ∤ a i p|a_0,\cdots,p|a_{i-1},p\nmid a_i pa0,,pai1,pai
    ​ 同理, g g g也是本原多项式,令 b j b_j bj是第一个不能被 p p p整除的系数,即
    p ∣ b 0 , ⋯   , p ∣ b j − 1 , p ∤ b j p|b_0,\cdots,p|b_{j-1},p\nmid b_j pb0,,pbj1,pbj
    ​ 对于 h h h的系数 d i + j d_{i+j} di+j,由乘积定义:
    d i + j = a i b j + a i − 1 b j + 1 + a i − 2 b j + 2 + ⋯ + a i + 1 b j − 1 + a i + 2 b j − 2 + ⋯ \begin{aligned} d_{i+j} = &a_ib_j + a_{i-1}b{j+1} + a_{i-2}b{j+2} + \cdots \\ & + a_{i+1}b{j-1} + a_{i+2}b{j-2} + \cdots \end{aligned} di+j=aibj+ai1bj+1+ai2bj+2++ai+1bj1+ai+2bj2+
    ​ 由假设可知, p p p整除上式左端 d i + j d_{i+j} di+j p p p整除上式右端 a i b j a_ib_j aibj以外的每一项,但是 p p p不能整除 a i b j a_ib_j aibj。因此 p p p不能整除 d i + j d_{i+j} di+j,与假设矛盾。

    ​ 所以, h h h一定是本原多项式。

\quad

定理(2)

如果一非零的整系数多项式能够分解成了两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积。

  • ​ 设整系数多项式 f ( x ) f(x) f(x)有分解式
    f ( x ) = g ( x ) h ( x ) f(x) = g(x)h(x) f(x)=g(x)h(x)
    其中 g ( x ) , h ( x ) g(x),h(x) g(x),h(x)是有理系数多项式,且
    ∂ ( g ) < ∂ ( f ) , ∂ ( h ) < ∂ ( f ) \partial(g)<\partial(f),\partial(h)<\partial(f) (g)<(f),(h)<(f)
    ​ 令
    f = a f 1 g = r   g 1 ,   h = s   h 1 f=af_1 \\ g=r~g_1, ~h=s~h_1 f=af1g=r g1, h=s h1
    其中 f 1 . g 1 , h 1 f_1.g_1,h_1 f1.g1,h1是本原多项式, a a a是整数, r , s r,s r,s是有理数。于是,
    a f 1 = r s   g 1 h 1 af_1 = rs~g_1h_1 af1=rs g1h1
    ​ 根据高斯引理,有
    a = ± r s a = \pm rs a=±rs
    r s rs rs是整数。

    ​ 所以$f(x) = ,这里 ,这里 ,这里rsg_1,h_1 都是整系数多项式,且次数都小于 都是整系数多项式,且次数都小于 都是整系数多项式,且次数都小于f$。

定理(2)的推论

f ( x ) , g ( x ) f(x),g(x) f(x),g(x)整系数多项式,且 g ( x ) g(x) g(x)本原多项式。如果 f ( x ) = g ( x ) h ( x ) f(x) = g(x)h(x) f(x)=g(x)h(x),其中 h ( x ) h(x) h(x)有理系数多项式,那么 h ( x ) h(x) h(x)一定是整系数多项式。

  • 已知整系数多项式 f ( x ) f(x) f(x)具有分解式
    f ( x ) = g ( x ) h ( x ) f(x) = g(x)h(x) f(x)=g(x)h(x)
    f = a f 1 , h = b h 1 f=af_1,h=bh_1 f=af1,h=bh1,其中 g , f 1 , h 1 g,f_1,h_1 g,f1,h1是本原多项式, a a a是整数, b b b是有理数。于是,
    a f 1 = g   b h 1 af_1 = g~bh_1 af1=g bh1
    根据高斯引理,有
    a = ± b a = \pm b a=±b
    所以 b b b是整数, h h h是整系数多项式。

\quad

定理(3)


f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 f(x)=anxn+an1xn1++a0
是一个整系数多项式,而 r s \frac rs sr是它的一个有理根,其中 r , s r,s r,s互素,那么必有 s ∣ a n , r ∣ a 0 s|a_n,r|a_0 san,ra0,特别地,如果 f ( x ) f(x) f(x)的首项系数 a n = 1 a_n=1 an=1,那么 f ( x ) f(x) f(x)的有理根都是整根,而且是 a 0 a_0 a0的因子。

  • 因为 r s \frac rs sr f ( x ) f(x) f(x)的一个有理根。因此在有理数域上
    ( x − s r )   ∣   f ( x ) (x-\frac sr) ~|~ f(x) (xrs)  f(x)
    从而
    ( s x − r )   ∣   f ( x ) (sx-r) ~|~ f(x) (sxr)  f(x)
    因为 s , r s,r s,r互素,所以 s x − r sx-r sxr是一个本原多项式。根据定理(2)的推论,
    f ( x ) = ( s x − r ) ( b n − 1 x n − 1 + ⋯ + b 0 ) f(x) = (sx-r)(b_{n-1} x^{n-1}+\cdots+b_0) f(x)=(sxr)(bn1xn1++b0)
    式中 b n − 1 , ⋯   , b 0 b_{n-1},\cdots,b_0 bn1,,b0都是整数,比较两边系数,得
    a n = s b n − 1 ,    a 0 = − r b 0 a_n = sb_{n-1},~~a_0 = -rb_0 an=sbn1,  a0=rb0
    因此
    s ∣ a n ,    r ∣ a 0 s | a_n,~~r|a_0 san,  ra0

定理(4):艾森斯坦判别法


f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 f(x)=anxn+an1xn1++a0
是一个整系数多项式。如果有一个素数 p p p,使得
1 )   p ∤ a n ; 2 )   p   ∣   a n − 1 ,   p   ∣   a n − 2 , ⋯   ,   p   ∣   a 0 ; 3 )   p 2 ∤ a 0 , \begin{aligned} &1)~p \nmid a_n; \\ &2)~p~|~a_{n-1},~p~|~a_{n-2},\cdots,~p~|~a_0; \\ &3)~p^2 \nmid a_0, \end{aligned} 1) pan;2) p  an1, p  an2,, p  a0;3) p2a0,
那么 f ( x ) f(x) f(x)有理数域上是不可约的。

:根据定理 ( 4 ) (4) (4),可知对于任意正整数 n n n、任意素数 p p p,多项式   x n + p   ~x^n + p~  xn+p 在有理数域上是不可约的。由此可见,在有理数域上,存在任意次数的不可约多项式

  • (反证法)

    如果 f ( x ) f(x) f(x)在有理数域上可约,那么由定理 ( 2 ) (2) (2) f ( x ) f(x) f(x)可以分解成两个次数较低的整系数多项式的乘积:
    f ( x ) = ( b l x l + b l − 1 x l − 1 + ⋯ + b 0 ) ( c m x m + c m − 1 x m − 1 = ⋯ + c 0 )    ( l , m < n ; l + m = n ) f(x) = (b_l x^l + b_{l-1} x^{l-1} + \cdots + b_0)(c_m x^m + c_{m-1} x^{m-1} = \cdots + c_0)~~(l,m < n; l+m=n) f(x)=(blxl+bl1xl1++b0)(cmxm+cm1xm1=+c0)  (l,m<n;l+m=n)
    于是
    a n = b l c m , a 0 = b 0 c 0 a_n = b_l c_m, a_0 = b_0c_0 an=blcm,a0=b0c0
    因为   p ∣ a 0 ~p|a_0  pa0,所以   p   ~p~  p 能整除 b 0 b_0 b0 c 0 c_0 c0。但是 p 2 ∤ a 0 p^2 \nmid a_0 p2a0,所以   p   ~p~  p 不能同时整除 b 0 b_0 b0 c 0 c_0 c0。不妨假设   p ∣ b 0   ~p|b_0~  pb0    p ∤ c 0 ~p\nmid c_0  pc0。另一方面,因为 p ∤ a n p\nmid a_n pan,所以 p ∤ b l p \nmid b_l pbl。假设 b 0 , b 1 , ⋯   , b l b_0,b_1,\cdots,b_l b0,b1,,bl中第一个不能被   p   ~p~  p 整除的是 b k b_k bk。比较 f ( x ) f(x) f(x) x k x^k xk的系数,得等式
    a k = b k c 0 + b k − 1 C 1 + ⋯ + b 0 c k a_k = b_kc_0 + b_{k-1}C_1 + \cdots + b_0c_k ak=bkc0+bk1C1++b0ck
    式中 a k , b k − 1 , ⋯   , b 0 a_k,b_{k-1},\cdots,b_0 ak,bk1,,b0都能被   p   ~p~  p 整除,所以 b k c 0 b_kc_0 bkc0也必能被   p   ~p~  p 整除。

    根据假设 p ∤ b k , p ∤ c 0 p \nmid b_k,p \nmid c_0 pbk,pc0,可推得 p ∤ b k c 0 p \nmid b_kc_0 pbkc0,即 p ∤ a k p \nmid a_k pak,与结论矛盾。所以定理 ( 4 ) (4) (4)成立。


多元多项式

\quad

概念

单项式

P P P是一个数域, x 1 , x 2 , ⋯   , x n   x_1,x_2,\cdots,x_n~ x1,x2,,xn    n   ~n~  n 个变量。形如
a   x 1 k 1 x 2 k 2 ⋯ x n k n a ~ {x_1}^{k_1} {x_2}^{k_2} \cdots {x_n}^{k_n} a x1k1x2k2xnkn
的式子,其中 a ∈ P a \in P aP k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn是非负整数。这样的式子称为一个单项式 k 1 + k 2 + ⋯ + k n k_1+k_2+\cdots+k_n k1+k2++kn称为单项式的次数

同类项

如果两个单项式中相同变量的幂也相同,那么他们就称为同类项

多项式

一些单项式的和
∑ k 1 , k 2 , ⋯   , k n a k 1 k 2 ⋯ k n   x 1 k 1 x 2 k 2 ⋯ x n k n \sum_{k_1,k_2,\cdots,k_n} a_{k_1k_2\cdots k_n}~{x_1}^{k_1} {x_2}^{k_2} \cdots {x_n}^{k_n} k1,k2,,knak1k2kn x1k1x2k2xnkn
就称为   n ~n  n元多项式,或简称多项式。其中系数不为零的单项式的最高次数就称为这个多项式的次数

n元多项式环

所有系数在数域 P P P中的 n n n元多项式的全体,称为数域 P P P上的 n n n元多项式环,记为 P [ x 1 , x 2 , ⋯   , x n ] ‾ \underline{P[x_1,x_2,\cdots,x_n]} P[x1,x2,,xn]

齐次多项式

如果多项式
f ( x 1 , x 2 , ⋯   , x n ) = ∑ k 1 , k 2 , ⋯   , k n a k 1 k 2 ⋯ k n   x 1 k 1 x 2 k 2 ⋯ x n k n f(x_1,x_2,\cdots,x_n) = \sum_{k_1,k_2,\cdots,k_n} a_{k_1k_2\cdots k_n}~{x_1}^{k_1} {x_2}^{k_2} \cdots {x_n}^{k_n} f(x1,x2,,xn)=k1,k2,,knak1k2kn x1k1x2k2xnkn
中每个单项式全是 m m m次,则称该多项式为 m m m齐次多项式

齐次成分

任何一个 m m m次多项式 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)都可以唯一地表示成
f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 0 m f i ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) = \sum_{i=0}^m f_i(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)=i=0mfi(x1,x2,,xn)
其中 f i ( x 1 , x 2 , ⋯   , x n ) f_i(x_1,x_2,\cdots,x_n) fi(x1,x2,,xn) i i i次齐次多项式,则 f i ( x 1 , x 2 , ⋯   , x n ) f_i(x_1,x_2,\cdots,x_n) fi(x1,x2,,xn)称为 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) i i i齐次成分

\quad

字典排列法

定义

​ 每一类单项式都对应一个 n n n元数组 ( k 1 , k 2 , ⋯   , k n ) (k_1,k_2,\cdots,k_n) (k1,k2,,kn),其中 k i k_i ki为非负整数。这个对应是 1 − 1 1-1 11的。为了给出单项式之间一个排列顺序的方法,我们只要对于 n n n元数组定义一个先后顺序。

​ 如果数
k 1 − l 1 ,   k 2 − l 2 ,   ⋯   ,   k n − l n k_1-l_1,~k_2-l_2,~\cdots,~k_n-l_n k1l1, k2l2, , knln
中第一个不为零的数是正的,也就是说,有 i ≤ n i\le n in使
k 1 − l 1 = 0 ,   ⋯   ,   k i − 1 − l i − 1 ,   k i − l i > 0 k_1-l_1=0,~\cdots,~k_{i-1}-l_{i-1},~k_i-l_i>0 k1l1=0, , ki1li1, kili>0
那么,我们就称 n n n元数组 ( k 1 , k 2 , ⋯   , k n ) (k_1,k_2,\cdots,k_n) (k1,k2,,kn)先于 n n n元数组 ( l 1 , l 2 , ⋯   , l n ) (l_1,l_2,\cdots,l_n) (l1,l2,,ln),并记为
( k 1 , k 2 , ⋯   , k n ) > ( l 1 , l 2 , ⋯   , l n ) (k_1,k_2,\cdots,k_n) > (l_1,l_2,\cdots,l_n) (k1,k2,,kn)>(l1,l2,,ln)

详解

​ 由定义可知,对于任意两个 n n n元数组 ( k 1 , k 2 , ⋯   , k n ) , ( l 1 , l 2 , ⋯   , l n ) (k_1,k_2,\cdots,k_n),(l_1,l_2,\cdots,l_n) (k1,k2,,kn),(l1,l2,,ln),关系有且仅有
( k 1 , k 2 , ⋯   , k n ) > ( l 1 , l 2 , ⋯   , l n ) ; ( k 1 , k 2 , ⋯   , k n ) = ( l 1 , l 2 , ⋯   , l n ) ; ( k 1 , k 2 , ⋯   , k n ) < ( l 1 , l 2 , ⋯   , l n ) , (k_1,k_2,\cdots,k_n) > (l_1,l_2,\cdots,l_n); \\ (k_1,k_2,\cdots,k_n) = (l_1,l_2,\cdots,l_n); \\ (k_1,k_2,\cdots,k_n) < (l_1,l_2,\cdots,l_n), (k1,k2,,kn)>(l1,l2,,ln);(k1,k2,,kn)=(l1,l2,,ln);(k1,k2,,kn)<(l1,l2,,ln),
中一个成立。同时,关系" > > >"具有传递性

​ 按字典排列法写出来的第一个系数不为零的单项式称为单项式的首项

定理(1)

f ( x 1 , x 2 , ⋯   , x n ) ≠ 0 , g ( x 1 , x 2 , ⋯   , x n ) ≠ 0 f(x_1,x_2,\cdots,x_n) \ne 0,g(x_1,x_2,\cdots,x_n)\ne 0 f(x1,x2,,xn)=0,g(x1,x2,,xn)=0时,乘积   f ⋅ g   ~f\cdot g~  fg 的首项等于 f f f的首项与 g g g的首项的乘积。

  • 假设 f f f的首项与第二项的 n n n元数组差异在第 i i i个变量 x i x_i xi g g g的首项与第二项的 n n n元数组差异在第 j j j个变量 x j x_j xj,且 1 ≤ i < j ≤ n 1\le i<j\le n 1i<jn

    f f f的任一第 s s s ( k 1 s , k 2 s , ⋯   , k n s ) (k_{1s},k_{2s},\cdots,k_{ns}) (k1s,k2s,,kns) g g g的任一第 t t t ( l 1 t , l 2 t , ⋯   , l n t ) (l_{1t},l_{2t},\cdots,l_{nt}) (l1t,l2t,,lnt)

    f f f中任意项与 g g g的任意项乘积的 n n n元数组 ( k 1 s + l 1 t , k 2 s + l 2 t , ⋯   , k n s + l n t ) (k_{1s}+l_{1t},k_{2s}+l_{2t},\cdots,k_{ns}+l_{nt}) (k1s+l1t,k2s+l2t,,kns+lnt)均有 k i 1 + l i t > k i s + l i t , s > 1 k_{i1}+l_{it} > k_{is}+l_{it},s>1 ki1+lit>kis+lit,s>1,所以存在以下关系:
    ( k 11 + l 1 t , k 21 + l 2 t , ⋯   , k n 1 + l n t ) > ( k 1 s + l 1 t , k 2 s + l 2 t , ⋯   , k n s + l n t ) (k_{11}+l_{1t},k_{21}+l_{2t},\cdots,k_{n1}+l_{nt}) > (k_{1s}+l_{1t},k_{2s}+l_{2t},\cdots,k_{ns}+l_{nt}) (k11+l1t,k21+l2t,,kn1+lnt)>(k1s+l1t,k2s+l2t,,kns+lnt)
    同理, f f f的首项与 g g g的任意项乘积的 n n n元数组 ( k 11 + l 1 t , k 21 + l 2 t , ⋯   , k n 1 + l n t ) (k_{11}+l_{1t},k_{21}+l_{2t},\cdots,k_{n1}+l_{nt}) (k11+l1t,k21+l2t,,kn1+lnt)均有 k j 1 + l j 1 > k j 1 + l j t , t > 1 k_{j1}+l_{j1} > k_{j1}+l_{jt},t>1 kj1+lj1>kj1+ljt,t>1,所以存在以下关系:
    ( k 11 + l 11 , k 21 + l 21 , ⋯   , k n 1 + l n 1 ) > ( k 11 + l 1 t , k 21 + l 2 t , ⋯   , k n 1 + l n t ) (k_{11}+l_{11},k_{21}+l_{21},\cdots,k_{n1}+l_{n1}) > (k_{11}+l_{1t},k_{21}+l_{2t},\cdots,k_{n1}+l_{nt}) (k11+l11,k21+l21,,kn1+ln1)>(k11+l1t,k21+l2t,,kn1+lnt)
    根据传递性,有
    ( k 11 + l 11 , k 21 + l 21 , ⋯   , k n 1 + l n 1 ) > ( k 1 s + l 1 t , k 2 s + l 2 t , ⋯   , k n s + l n t ) (k_{11}+l_{11},k_{21}+l_{21},\cdots,k_{n1}+l_{n1}) > (k_{1s}+l_{1t},k_{2s}+l_{2t},\cdots,k_{ns}+l_{nt}) (k11+l11,k21+l21,,kn1+ln1)>(k1s+l1t,k2s+l2t,,kns+lnt)
    f , g f,g f,g的首项乘积先于任意项乘积。

定理(1)的推论(1)

如果 f i ≠ 0 , i = 1 , 2 , ⋯   , m f_i \ne 0,i=1,2,\cdots,m fi=0,i=1,2,,m,那么 f 1 f 2 ⋯ f m f_1f_2\cdots f_m f1f2fm的首项等于每个 f i f_i fi首项的乘积。

  • (数学归纳法)证明略

定理(1)的推论(2)

如果 f ( x 1 , x 2 , ⋯   , x n ) ≠ 0 , g ( x 1 , x 2 , ⋯   , x n ) ≠ 0 f(x_1,x_2,\cdots,x_n)\ne 0,g(x_1,x_2,\cdots,x_n)\ne 0 f(x1,x2,,xn)=0,g(x1,x2,,xn)=0,那么 f ⋅ g ≠ 0 f\cdot g \ne 0 fg=0

  • 证明略

定理(2)

两个齐次多项式的乘积仍是齐次多项式,它的次数等于这两个多项式的次数之和。

  • f ( x 1 , x 2 , ⋯   , x n ) ≠ 0 f(x_1,x_2,\cdots,x_n) \ne 0 f(x1,x2,,xn)=0 s s s次齐次多项式, g ( x 1 , x 2 , ⋯   , x n ) ≠ 0 g(x_1,x_2,\cdots,x_n)\ne 0 g(x1,x2,,xn)=0 t t t次齐次多项式,则

    f f f中任意项与 g g g的任意项乘积的 n n n元数组为 ( k 1 p + l 1 q , k 2 p + l 2 q , ⋯   , k n p + l n q ) (k_{1p}+l_{1q},k_{2p}+l_{2q},\cdots,k_{np}+l_{nq}) (k1p+l1q,k2p+l2q,,knp+lnq)

    于是,每项的次数为 k 1 p + l 1 q + k 2 p + l 2 q + ⋯ + k n p + l n q = s + t k_{1p}+l_{1q}+k_{2p}+l_{2q}+\cdots+k_{np}+l_{nq} = s+t k1p+l1q+k2p+l2q++knp+lnq=s+t

    结论得证。


对称多项式

\quad

现象


f ( x ) = x n + a 1 x n − 1 + ⋯ + a n (1) f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \tag{1} f(x)=xn+a1xn1++an(1)
P [ x ] P[x] P[x]中的一个多项式。如果 f ( x ) f(x) f(x)在数域 P P P中 有 n n n个根 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn,那么 f ( x ) f(x) f(x)就可以分解成
f ( x ) = ( x − α 1 ) ( x − α 2 ) ⋯ ( x − α n ) (2) f(x) = (x - \alpha_1) (x - \alpha_2) \cdots (x - \alpha_n) \tag{2} f(x)=(xα1)(xα2)(xαn)(2)
( 2 ) (2) (2)展开,与 ( 1 ) (1) (1)比较根与系数的关系如下:
{ a 1 = ( − 1 ) ∑ i = 1 n α i = − ( α 1 + α 2 + ⋯ + α n ) a 2 = ( − 1 ) 2 ∑ 1 ≤ i < j ≤ n α i α j = α 1 α 2 + α 1 α 3 + ⋯ + α n − 1 α n ⋯ ⋯ a i = ( − 1 ) i ∑ α k 1 α k 2 ⋯ α k i ( 所有可能的 i 个不同的 α k j 的乘积之和 ) ⋯ ⋯ a n = ( − 1 ) n ∏ i = 1 n α i = ( − 1 ) n ( α 1 α 2 ⋯ α n ) (3) \left\{ \begin{aligned} a_1 &= (-1) \sum_{i=1}^n \alpha_i = -(\alpha_1 + \alpha_2 +\cdots + \alpha_n) \\ a_2 &= (-1)^2 \sum_{1\le i<j \le n} \alpha_i \alpha_j = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \cdots + \alpha_{n-1} \alpha_n \\ & \cdots \cdots \\ a_i &= (-1)^i \sum \alpha_{k_1}\alpha_{k_2}\cdots\alpha_{k_i} (所有可能的i个不同的\alpha_{k_j}的乘积之和) \\ & \cdots \cdots \\ a_n &= (-1)^n \prod_{i=1}^n \alpha_i = (-1)^n (\alpha_1 \alpha_2 \cdots \alpha_n) \end{aligned} \right. \tag{3} a1a2aian=(1)i=1nαi=(α1+α2++αn)=(1)21i<jnαiαj=α1α2+α1α3++αn1αn⋯⋯=(1)iαk1αk2αki(所有可能的i个不同的αkj的乘积之和)⋯⋯=(1)ni=1nαi=(1)n(α1α2αn)(3)
由此看出,系数是对称地依赖于方程的根的。即,以下 n n n n n n元多项式
{ σ 1 = x 1 + x 2 + ⋯ + x n σ 2 = x 1 x 2 + x 1 x 3 + ⋯ + x n − 1 x n ⋯ ⋯ σ n = x 1 x 2 ⋯ x n (4) \left \{ \begin{aligned} \sigma_1 &= x_1 + x_2 + \cdots + x_n \\ \sigma_2 &= x_1 x_2 + x_1 x_3 + \cdots + x_{n-1}x_n \\ &\cdots\cdots \\ \sigma_n &= x_1 x_2 \cdots x_n \end{aligned} \right. \tag{4} σ1σ2σn=x1+x2++xn=x1x2+x1x3++xn1xn⋯⋯=x1x2xn(4)
是对称地依赖于变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的。

\quad

定义

n n n元多项式 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn),如果对于任意的 i , j , 1 ≤ i < j ≤ n i,j,1\le i < j \le n i,j,1i<jn,都有
f ( x 1 , ⋯   , x i , ⋯   , x j , ⋯   , x n ) = f ( x 1 , ⋯   , x j , ⋯   , x i , ⋯   , x n ) f(x_1,\cdots,x_{\mathbf{i}},\cdots,x_{\mathbf{j}},\cdots,x_n) \\ = f(x_1,\cdots,x_{\mathbf{j}},\cdots,x_{\mathbf{i}},\cdots,x_n) f(x1,,xi,,xj,,xn)=f(x1,,xj,,xi,,xn)
那么这个多项式称为对称多项式 ( 4 ) (4) (4)中的 σ 1 , σ 2 , ⋯   , σ n \sigma_1,\sigma_2,\cdots,\sigma_n σ1,σ2,,σn都是 n n n元对称多项式,它们称为初等对称多项式

​ 由定义可知, ① 对称多项式的和、积 ‾ ①\underline{对称多项式的和、积} 对称多项式的和、积以及 ② 对称多项式的多项式 ‾ ②\underline{对称多项式的多项式} 对称多项式的多项式还是对称多项式。①是显然的;对于②,如果 f 1 , f 2 , ⋯   , f m f_1,f_2,\cdots,f_m f1,f2,,fm n n n元对称多项式,而 g ( y 1 , y 2 , ⋯   , y m ) g(y_1,y_2,\cdots,y_m) g(y1,y2,,ym)是任意多项式,那么
g ( f 1 , f 2 , ⋯   , f m ) = h ( x 1 , x 2 , ⋯   , x n ) g(f_1,f_2,\cdots,f_m) = h(x_1,x_2,\cdots,x_n) g(f1,f2,,fm)=h(x1,x2,,xn)
n n n元对称多项式。特别地,初等对称多项式的多项式还是对称多项式。

\quad

对称多项式基本定理

关于对称多项式的基本事实就是,任意对称多项式都能表成初等对称多项式的多项式。

对于任意一个 n n n元对称多项式 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)都有一个 n n n元多项式 φ ( y 1 , y 2 , ⋯   , y n ) \varphi(y_1,y_2,\cdots,y_n) φ(y1,y2,,yn),使得
f ( x 1 , x 2 , ⋯   , x n ) = φ ( σ 1 , σ 2 , ⋯   , σ n ) f(x_1,x_2,\cdots,x_n) = \varphi(\sigma_1, \sigma_2, \cdots, \sigma_n) f(x1,x2,,xn)=φ(σ1,σ2,,σn)

  • ​ 设对称多项式 f f f的首项(按字典排列法)为
    a   x 1 l 1 x 2 l 2 ⋯ x n l n ,   a ≠ 0 (5) a~{x_1}^{l_1} {x_2}^{l_2} \cdots {x_n}^{l_n},~a\ne 0 \tag{5} a x1l1x2l2xnln, a=0(5)
    由于 ( 5 ) (5) (5)是对称多项式的首项,必有
    l 1 ≥ l 2 ≥ ⋯ ≥ l n ≥ 0 l_1 \ge l_2 \ge \cdots \ge l_n \ge 0 l1l2ln0

    • 否则,设有 l i < l i + 1 l_i < l_{i+1} li<li+1,由于 f f f是对称多项式,所以 f f f在包含 ( 5 ) (5) (5)的同时必包含
      a   x 1 l 1 ⋯ x i l i + 1 x i + 1 l i ⋯ x n l n (6) a~{x_1}^{l_1}\cdots{x_i}^{l_\mathbf{i+1}}{x_{i+1}}^{l_\mathbf{i}}\cdots{x_n}^{l_n} \tag{6} a x1l1xili+1xi+1lixnln(6)
      根据字典排列法, ( 6 ) (6) (6)项就应该先于 ( 5 ) (5) (5),与首项的要求不符。

    作对称多项式 φ 1 = a   σ 1 l 1 − l 2 σ 2 l 2 − l 3 ⋯ σ n − 1 l n − 1 − l n σ n l n \varphi_1 = a~\sigma_1^{l_1-l_2} \sigma_2^{l_2-l_3} \cdots\sigma_{n-1}^{l_{n-1}-l_n} \sigma_n^{l_n} φ1=a σ1l1l2σ2l2l3σn1ln1lnσnln,因为 σ 1 , σ 2 , ⋯   , σ n \sigma_1,\sigma_2,\cdots,\sigma_n σ1,σ2,,σn的首项分别是 x 1 , x 1 x 2 , ⋯   , x 1 x 2 ⋯ x n x_1,x_1x_2,\cdots,x_1x_2\cdots x_n x1,x1x2,,x1x2xn,于是 ( 6 ) (6) (6)在展开之后,首项为
    a   x 1 l 1 − l 2 ( x 1 x 2 ) l 2 − l 3 ⋯ ( x 1 x 2 ⋯ x n ) l n = a   x 1 l 1 x 2 l 2 ⋯ x n l n (6) a~x_1^{l_1-l_2} (x_1x_2)^{l_2-l_3} \cdots (x_1x_2\cdots x_n)^{l_n} = a~{x_1}^{l_1}{x_2}^{l_2} \cdots {x_n}^{l_n} \tag{6} a x1l1l2(x1x2)l2l3(x1x2xn)ln=a x1l1x2l2xnln(6)
    所以, f f f ( 6 ) (6) (6)有相同的首项,因而,对称多项式
    f 1 = f − a   σ 1 l 1 − l 2 σ 2 l 2 − l 3 ⋯ σ n − 1 l n − 1 − l n σ n l n = f − φ 1 f_1 = f - a~\sigma_1^{l_1-l_2} \sigma_2^{l_2-l_3} \cdots\sigma_{n-1}^{l_{n-1}-l_n} \sigma_n^{l_n} \\ = f-\varphi_1 f1=fa σ1l1l2σ2l2l3σn1ln1lnσnln=fφ1
    f 1 f_1 f1存在比 f f f次数较低的首项。

    ​ 对 f 1 f_1 f1重复如上操作,则得到一系列如下多项式:
    f ,   f 1 = f − φ 1 ,   f 2 = f 1 − φ 2 ,   ⋯ (7) f,~f_1=f-\varphi_1,~f_2=f_1-\varphi_2,~\cdots \tag{7} f, f1=fφ1, f2=f1φ2, (7)
    他们的首项次数逐个降低,其中 φ i \varphi_i φi σ 1 , σ 2 , ⋯   , σ n \sigma_1,\sigma_2,\cdots,\sigma_n σ1,σ2,,σn的多项式。

    ​ 设
    b   x 1 p 1 x 2 p 2 ⋯ x n p n (8) b~x_1^{p_1} x_2^{p_2} \cdots x_n^{p_n} \tag{8} b x1p1x2p2xnpn(8)
    ( 7 ) (7) (7)中某对称多项式的首项,根据字典排列法 ( 5 ) (5) (5)要先于 ( 8 ) (8) (8),于是有
    l 1 ≥ p 1 ≥ p 2 ≥ ⋯ ≥ p n ≥ 0 (9) l_1 \ge p_1 \ge p_2 \ge \cdots \ge p_n \ge 0 \tag{9} l1p1p2pn0(9)
    适合条件 ( 9 ) (9) (9) n n n元数组 ( p 1 , p 2 , ⋯   , p n ) (p_1,p_2,\cdots,p_n) (p1,p2,,pn)只能有有限多个,因而 ( 7 ) (7) (7)中也只能有有限多个对称多项式不为零,即有正整数 h h h,使得
    f h = 0 f_h = 0 fh=0

    • 这证明了 f = φ 1 + φ 2 + ⋯ + φ h f = \varphi_1 + \varphi_2 + \cdots + \varphi_h f=φ1+φ2++φh

    所以, f f f可以表成初等对称多项式的一个多项式。

\quad

一元多项式判别式:差积平方多项式D

x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,差积的平方
D = ∏ i < j   ( x i − x j ) 2 D = \prod_{i<j} ~(x_i-x_j)^2 D=i<j (xixj)2
是一个重要的对称多项式。按对称多项式基本定理, D D D可以表示成
a 1 = − σ 1 ,   a 2 = σ 2 ,   ⋯   ,   a k = ( − 1 ) n σ n a_1 = -\sigma_1, ~a_2 = \sigma_2, ~\cdots, ~a_k = (-1)^n\sigma_n a1=σ1, a2=σ2, , ak=(1)nσn
的多项式 D ( a 1 , a 2 , ⋯   . a n ) D(a_1,a_2,\cdots.a_n) D(a1,a2,.an)。由根与系数的关系知, x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn
f ( x ) = x n + a 1 x n − 1 + ⋯ + a n f(x) = x^n + a_1x^{n-1} + \cdots + a_n f(x)=xn+a1xn1++an
的根,可以看出 D ( a 1 , a 2 , ⋯   , a n ) = 0 D(a_1,a_2,\cdots,a_n)=0 D(a1,a2,,an)=0 f f f在复数域中有重根的充要条件。我们称 D ( a 1 , a 2 , ⋯   , a n ) D(a_1,a_2,\cdots,a_n) D(a1,a2,,an)为一元多项式 f f f的判别式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学:人类精神虐待(゚Д゚)ノ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值