自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 《机器学习》——支持向量机(SVM)

1. 概述支持向量机(support vector machines, SVM)是一种二分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。与之前学习笔记所述的分类问题不同的是:分类问题强调将不同类的样本点以一条线分隔开,而支持向量机则是强调将不同的两类样本点分隔的间隔最大。

2024-06-11 16:58:38 642 1

原创 机器学习中的逻辑回归

机器学习中的逻辑回归简介逻辑回归是机器学习领域中一种用于二分类问题的常用算法。尽管其名字中包含"回归"一词,但实际上,逻辑回归是一种分类算法,用于估计输入特征与某个事件发生的概率之间的关系。本文将深入讲解逻辑回归的原理、实际应用以及使用 Python 进行实现的代码。逻辑回归的基本原理逻辑回归的目标是建立一个能够预测输出为二分类标签的模型。它采用逻辑函数(也称为sigmoid函数)将线性组合的特征映射到[0, 1]的范围内,表示事件发生的概率。逻辑函数的公式如下:其中,是事件发生的概率,

2024-05-28 14:56:37 308

原创 机器学习——朴素贝叶斯算法以及案例

朴素贝叶斯是贝叶斯决策理论中的一部分,而贝叶斯决策理论是基于贝叶斯定理的一种统计方法,因此我会先为大家介绍何为“贝叶斯定理”。通过对这个垃圾邮件分类器系统我了解到了朴素贝叶斯分类器的结构非常直观,易于理解,这使得它在很多领域都有广泛的应用。同时,也需要注意朴素贝叶斯算法对特征独立性的假设,这可能会降低模型的准确性。

2024-05-14 14:10:16 1284

原创 机器学习—决策树

ID3算法生成的决策树是对数据进行分类的树形结构,每个非叶子节点代表一个属性,每个分支代表一个属性值,每个叶节点代表一个类别。此外,它使用代价复杂度剪枝(Cost-Complexity Pruning)来剪枝,这是一种后剪枝方法,通过最小化树的复杂度和错误率来找到最佳的子树。信息理论是基于数学的理论框架,用于量化信息的传输、存储和处理的特性。通过计算每个特征划分前后的信息熵变化,我们可以选择最优的特征来最大程度地减少数据集的不确定性,这个变化量被称为信息增益(Information Gain)。

2024-04-30 18:41:41 756

原创 机器学习之模型评估

1.什么是模型评估模型评估是对训练好的模型性能进行评估, 模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。2.模型评估的类型机器学习的任务有回归,分类和聚类,针对不同的任务有不同的评价指标。按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。3.为什么要进行模型评估?模型评估是对训练好的模型性能进行评估, 模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。

2024-04-15 23:56:02 1433

原创 机器学习实验:k-近邻算法

1. k-近邻算法的定义k-近邻算法是一种常用的监督学习算法,用于分类和回归任务。它采用测量不同特征值之间的距离方法进行分类,适用于数值型和标称型数据。其优点是精度高、对异常值不敏感、无数据输入假定;缺点是计算复杂度高、空间复杂度高。k-近邻算法(kNN)的工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。

2024-04-15 22:51:42 957 1

原创 Anaconda和VScode的安装流程

Anconda和VScode安装的整体流程。

2024-03-19 13:40:14 1894 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除