写在前文
材料的线弹性本构模型能够很好的描述处于工作荷载水平下的材料性能情况,后续材料的塑性理论也需要在弹性本构模型的基础上进行开展。由于砌体结构所采用的砌体材料具有明显的正交各项异性,故先从正交各向异性弹性入手,根据弹性理论中的正交各向异性弹性理论,建立砌体的正交各向异性弹性本构模型,并将该弹性本构模型写入Abaqus的材料子程序UMAT中,与Abaqus中自带的正交各向异性弹性本构模型进行对比验证,为后续砌体的正交各向异性弹塑性本构模型做好准备。
一、正交各向异性弹性基本理论
砌体的弹性各向异性主要是由其不同弹性特性的材料组分引起的(同样研究复合材料时也可能会遇到相同问题)。当通过不同的方向测量砌体,会得到不同的砌体的弹性特性。属于典型的正交各向异性材料,本文先从其平面正交各向异性弹性特性入手。
在正交各向异性材料的分析中,需要使用两个坐标系统:材料坐标系统与整体坐标系统。以砌体为例,材料坐标是指由平行于砂浆接缝(1轴)和垂直于砂浆接缝(2轴)所形成的坐标系统。整体坐标系统指的是在结构体系下,平行于水平面(x轴)与垂直于水平面(y轴)所形成的坐标系统。材料坐标与整体坐标间的夹角为θ,二者的关系如下图1所示:
图1 正交各向异性材料的材料坐标(1-2)与整体坐标(x-y)示意图
正交各项异性材料具有三个互相垂直坐标轴的材料弹性对称性,将坐标轴x、y和z分别垂直于三个材料对称,并要求绕这些轴转动180°之后弹性性能不发生改变,由此XX中的常数具有一定的关系。在这种情况下,x、y、z称为材料的主轴,同时材料弹性对称性要求四阶张量满足以下条件:

对于完整的正交各向异性材料,其三维弹性应力应变关系西要定义, 其中:
当研究问题为平面应力问题时,砌体结构单元的平面应力状态为σ3= 0,根据图1 所示的坐标关系示意图,以上的本构张量缩减为2×2矩阵,具体如下: