关于同余方程组是否有解的判定

博客详细探讨了一组同余方程有解的充要条件,即两两方程构成的方程组必须有解。通过归纳法证明了这一结论,涉及到gcd和lcm的概念,并指出gcd是质因子次数的最小值,lcm是最大值。证明过程严谨,适合数学和计算机科学领域的读者理解。
摘要由CSDN通过智能技术生成

最近做题发现了一个有意思的结论:一组同余方程有解的充要条件是两两方程构成的方程组有解

以下是它的证明:

必要性显然,考虑证明充分性

利用归纳法,在同余方程组\left\{\begin{matrix} x\equiv a_{1}(mod n_{1})\\ x\equiv a_{2}(mod n_{2})\\ ...\\ x\equiv a_{k}(mod n_{k})\\ \end{matrix}\right.中,已证明前t个同余方程满足条件,现考虑加入第t+1个同余方程

设前t个同余方程的特解为x_{0}lcm(n_{1}, n_{2}, ..., n_{t})=L

由于第t+1个同余方程与前t个两两有解,则gcd(n_{i}, n_{t+1})|a_{i}-a_{t+1} (1\leq i\leq t)

现需证明同余方程组\left\{\begin{matrix} x \equiv x_{0} (mod L) \\ x \equiv a_{t+1}(mod n_{t+1}) \end{matrix}\right.有解,即证gcd(L, n_{t+1})|x_{0}-a_{t+1}

可以发现对于1\leq i\leq tx_{0}可表示为u n_{i}+a_{i},因此x_{0}=un_{i}+a_{i}-a_{t+1},而gcd(n_{i}, n_{t+1})|un_{i}, gcd(n_{i}, n_{t+1})|a_{i}-a_{t+1},所以gcd(n_{i}, n_{t+1})|x_{0}-a_{t+1}

从而lcm(gcd(n_{1}, n_{t+1}), gcd(n_{2}, n_{t+1}), ..., gcd(n_{t}, n_{t+1}))|x_{0}-a_{t+1}

我们知道gcd的本质是质因子次数的min,lcm是质因子次数的max,且max(min(a, x), min(b, x), ...)=min(max(a, b, ..), x),所以lcm(gcd(n_{1}, n_{t+1}), gcd(n_{2}, n_{t+1}), ..., gcd(n_{t}, n_{t+1}))=gcd(lcm(n_{1}, n_{2}, ..., n_{t}), n_{t+1})=gcd(L, n_{t+1})

故原命题得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值