最近做题发现了一个有意思的结论:一组同余方程有解的充要条件是两两方程构成的方程组有解
以下是它的证明:
必要性显然,考虑证明充分性
利用归纳法,在同余方程组中,已证明前个同余方程满足条件,现考虑加入第个同余方程
设前个同余方程的特解为,
由于第个同余方程与前个两两有解,则
现需证明同余方程组有解,即证
可以发现对于,可表示为,因此,而,所以
从而
我们知道gcd的本质是质因子次数的min,lcm是质因子次数的max,且,所以
故原命题得证
最近做题发现了一个有意思的结论:一组同余方程有解的充要条件是两两方程构成的方程组有解
以下是它的证明:
必要性显然,考虑证明充分性
利用归纳法,在同余方程组中,已证明前个同余方程满足条件,现考虑加入第个同余方程
设前个同余方程的特解为,
由于第个同余方程与前个两两有解,则
现需证明同余方程组有解,即证
可以发现对于,可表示为,因此,而,所以
从而
我们知道gcd的本质是质因子次数的min,lcm是质因子次数的max,且,所以
故原命题得证