一、同余的概念
所谓的同余,顾名思义,就是许多的数被一个数d去除,有相同的余数。d在数学上的称谓是模。如a=6,b=1,d=5,则我们说a和b是模d同余的。因为他们都有相同的余数1。数学上的记法为:a ≡ b (mod d)。也就是说,a除以d所得之余数与b除以d所得之余数是相等的,例如6 ≡ 1 (mod 5)。
同余有一些非常重要的性质,例如:
(1)如果a≡x (mod d),b≡m(mod d),则有 a+b≡x+m (mod d)。
(2)如果a≡x (mod d)
一、同余的概念
所谓的同余,顾名思义,就是许多的数被一个数d去除,有相同的余数。d在数学上的称谓是模。如a=6,b=1,d=5,则我们说a和b是模d同余的。因为他们都有相同的余数1。数学上的记法为:a ≡ b (mod d)。也就是说,a除以d所得之余数与b除以d所得之余数是相等的,例如6 ≡ 1 (mod 5)。
同余有一些非常重要的性质,例如:
(1)如果a≡x (mod d),b≡m(mod d),则有 a+b≡x+m (mod d)。
(2)如果a≡x (mod d)