中国剩余定理

中国剩余定理源于中国古代数学,解决了一类一元线性同余方程组的问题。文章介绍了同余的概念、性质,详细阐述了中国剩余定理的历史背景和应用,并通过一个实例展示了如何用扩展欧几里得算法进行编程实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、同余的概念

所谓的同余,顾名思义,就是许多的数被一个数d去除,有相同的余数。d在数学上的称谓是模。如a=6,b=1,d=5,则我们说a和b是模d同余的。因为他们都有相同的余数1。数学上的记法为:a ≡ b (mod d)。也就是说,a除以d所得之余数与b除以d所得之余数是相等的,例如6  1 (mod 5)。


同余有一些非常重要的性质,例如:

(1)如果a≡x (mod d),b≡m(mod d),则有 a+b≡x+m (mod d)

(2)如果a≡x (mod d)

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值