#define BIT0(x) ((x)&0x01)
#define BIT1(x) (((x)&0x02)>>1)
#define BIT2(x) (((x)&0x04)>>2)
#define BIT3(x) (((x)&0x08)>>3)
#define BIT4(x) (((x)&0x10)>>4)
#define BIT5(x) (((x)&0x20)>>5)
#define BIT6(x) (((x)&0x40)>>6)
#define BIT7(x) (((x)&0x80)>>7)
void MakeEccTable()
{
inti,m;
BYTE xData;
m=0;
for(i=0;i<256;i++)
{
xData=0;
if(BIT0(i)^BIT2(i)^BIT4(i)^BIT6(i)) xData|=0x01;
if(BIT1(i)^BIT3(i)^BIT5(i)^BIT7(i)) xData|=0x02;
if(BIT0(i)^BIT1(i)^BIT4(i)^BIT5(i)) xData|=0x04;
if(BIT2(i)^BIT3(i)^BIT6(i)^BIT7(i)) xData|=0x08;
if(BIT0(i)^BIT1(i)^BIT2(i)^BIT3(i)) xData|=0x10;
if(BIT4(i)^BIT5(i)^BIT6(i)^BIT7(i)) xData|=0x20;
if(BIT0(i)^BIT1(i)^BIT2(i)^BIT3(i)^BIT4(i)^BIT5(i)^BIT6(i)^BIT7(i))
xData|=0x40;
if(m==15)
{
TRACE("0x%02X,/n",xData);
m=0;
}
else
{
TRACE("0x%02X,",xData);
m++;
}
}
}
ECC程序中nand_ecc_precalc_table表的生成原理
最新推荐文章于 2024-11-12 21:59:57 发布
在上文的《NAND FLASH ECC校验原理与实现》中贴出了ECC算法源程序,在ECC算法源程序中有个nand_ecc_precalc_table,用于快速生成ECC校验和,该表实际上是按照《NAND FLASH ECC校验原理与实现》表中的ECC原理生成的,理解了ECC校验和生成原理,实际上生成该表也就不存在任何困难了。下面是生成该表的源程序: