主要是我自己刷题的一些记录过程。如果有错可以指出哦,大家一起进步。
转载代码随想录
原文链接:
代码随想录
leetcode链接:541. 反转字符串 II
题目:
给定一个字符串 s 和一个整数 k,从字符串开头算起,每计数至 2k 个字符,就反转这 2k 字符中的前 k 个字符。
如果剩余字符少于 k 个,则将剩余字符全部反转。
如果剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符,其余字符保持原样。
示例:
示例 1:
输入:s = "abcdefg", k = 2
输出:"bacdfeg"
示例 2:
输入:s = "abcd", k = 2
输出:"bacd"
提示:
1 <= s.length <= 104
s 仅由小写英文组成
1 <= k <= 104
思路:
这道题目其实也是模拟,实现题目中规定的反转规则就可以了。
一些同学可能为了处理逻辑:每隔2k个字符的前k的字符,写了一堆逻辑代码或者再搞一个计数器,来统计2k,再统计前k个字符。
其实在遍历字符串的过程中,只要让 i += (2 * k),i 每次移动 2 * k 就可以了,然后判断是否需要有反转的区间。
因为要找的也就是每2 * k 区间的起点,这样写,程序会高效很多。
所以当需要固定规律一段一段去处理字符串的时候,要想想在在for循环的表达式上做做文章。
性能如下:
那么这里具体反转的逻辑我们要不要使用库函数呢,其实用不用都可以,使用reverse来实现反转也没毛病,毕竟不是解题关键部分。
使用C++库函数reverse的版本如下:
class Solution {
public:
string reverseStr(string s, int k) {
for (int i = 0; i < s.size(); i += (2 * k)) {
// 1. 每隔 2k 个字符的前 k 个字符进行反转
// 2. 剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符
if (i + k <= s.size()) {
reverse(s.begin() + i, s.begin() + i + k );
} else {
// 3. 剩余字符少于 k 个,则将剩余字符全部反转。
reverse(s.begin() + i, s.end());
}
}
return s;
}
};
那么我们也可以实现自己的reverse函数,其实和题目反转字符串道理是一样的。
下面实现的reverse函数区间是左闭右闭区间,代码如下:
class Solution {
public:
void reverse(string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
swap(s[i], s[j]);
}
}
string reverseStr(string s, int k) {
for (int i = 0; i < s.size(); i += (2 * k)) {
// 1. 每隔 2k 个字符的前 k 个字符进行反转
// 2. 剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符
if (i + k <= s.size()) {
reverse(s, i, i + k - 1);
continue;
}
// 3. 剩余字符少于 k 个,则将剩余字符全部反转。
reverse(s, i, s.size() - 1);
}
return s;
}
};
另一种思路的解法
class Solution {
public:
string reverseStr(string s, int k) {
int n = s.size(),pos = 0;
while(pos < n){
//剩余字符串大于等于k的情况
if(pos + k < n) reverse(s.begin() + pos, s.begin() + pos + k);
//剩余字符串不足k的情况
else reverse(s.begin() + pos,s.end());
pos += 2 * k;
}
return s;
}
};
自己的代码
我自己的代码,写的有些臃肿了。可以减少一些if判断
class Solution {
public:
void Swap(string& s, int left, int right) {
while (left < right) {
swap(s[left++], s[right--]);
}
}
string reverseStr(string s, int k) {
int len = s.size();
if (k == 1|| len ==1) return s;
if (len < k) { //全部翻转
Swap(s, 0, len - 1);
return s;
}
int i = 0;
while ((2 * k) * (i+1) < len) {
Swap(s, (2 * k) * i, (2 * k) * i + k - 1);
++i;
}
if ( len - (2 * k) * i>= k) {//剩下的元素
Swap(s, (2 * k) * i, (2 * k) * i + k - 1);
}
else {
Swap(s, (2 * k) * i, len - 1);
}
return s;
}
};