G - Cyclic Components CodeForces - 977E (dfs or 并查集)

2 篇文章 0 订阅
2 篇文章 0 订阅

E. Cyclic Components
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
You are given an undirected graph consisting of n vertices and m edges. Your task is to find the number of connected components which are cycles.

Here are some definitions of graph theory.

An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex a is connected with a vertex b, a vertex b is also connected with a vertex a). An edge can’t connect vertex with itself, there is at most one edge between a pair of vertices.

Two vertices u and v belong to the same connected component if and only if there is at least one path along edges connecting u and v.

A connected component is a cycle if and only if its vertices can be reordered in such a way that:

the first vertex is connected with the second vertex by an edge,
the second vertex is connected with the third vertex by an edge,

the last vertex is connected with the first vertex by an edge,
all the described edges of a cycle are distinct.
A cycle doesn’t contain any other edges except described above. By definition any cycle contains three or more vertices.

There are 6 connected components, 2 of them are cycles: [7,10,16] and [5,11,9,15].
Input
The first line contains two integer numbers n and m (1≤n≤2⋅105, 0≤m≤2⋅105) — number of vertices and edges.

The following m lines contains edges: edge i is given as a pair of vertices vi, ui (1≤vi,ui≤n, ui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,ui) there no other pairs (vi,ui) and (ui,vi) in the list of edges.

Output
Print one integer — the number of connected components which are also cycles.

Examples
inputCopy
5 4
1 2
3 4
5 4
3 5
outputCopy
1
inputCopy
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
outputCopy
2
Note
In the first example only component [3,4,5] is also a cycle.

The illustration above corresponds to the second example.

题意:给你一个非联通图,问其中有多少个环

思路1:很容易发现,如果是一个环的话,每个节点的度数一定为2,所以只要使用dfs,把每个连通块放入一个数组,接下来验证每个节点是不是度数为2就可以了

#include<bits/stdc++.h>
#define LL long long
#define Max 100005
const LL mod=1e9+7;
const LL LL_MAX=9223372036854775807;
using namespace std;
vector<int> m[2*Max],b;
int n,k,vis[2*Max],ans;
bool check()
{
    for(int i=0;i<b.size();i++){
        if(m[b[i]].size()!=2)
            return false;
    }
    return true;
}
void dfs(int x){
    if(vis[x])
       return ;
    b.push_back(x);
    vis[x]=1;
    for(int i=0;i<m[x].size();i++){
        if(!vis[m[x][i]])
            dfs(m[x][i]);
    }
}
int main()
{
    scanf("%d%d",&n,&k);
    int x,y;
    for(int i=0;i<k;i++){
         scanf("%d%d",&x,&y);
         m[x].push_back(y);
         m[y].push_back(x);
    }
    for(int i=1;i<=n;i++){
        if(!vis[i]){
            b.clear();
            dfs(i);
            if(check())
                ans++;
        }
    }
    printf("%d\n",ans);
    return 0;
}

思路2 很显然并查集也可以解决联通块的问题

#include<bits/stdc++.h>
#define LL long long
#define Max 1000005
const LL mod=1e9+7;
const LL LL_MAX=9223372036854775807;
using namespace std;
int n,k,ans;
int pre[2*Max];
vector<int>m[2*Max],c[2*Max];
bool check(int n)
{
    for(int i=0;i<c[n].size();i++)
        if(m[c[n][i]].size()!=2)
            return false;
    }
    return true;
}
void creat()
{
    for(int i=0; i<=n; i++)
        pre[i]=i;
}
int Find(int x)
{
    return x==pre[x]?x:pre[x]=Find(pre[x]);
}
void Union(int x,int y)
{
    pre[Find(x)]=Find(y);
}
int main()
{
    scanf("%d%d",&n,&k);
    int x,y;
    creat();
    for(int i=0; i<k; i++)
    {
        scanf("%d%d",&x,&y);
        m[x].push_back(y);
        m[y].push_back(x);
        Union(x,y);
    }
    for(int i=1;i<=n;i++){
        c[Find(i)].push_back(i);
    }
    for(int i=1;i<=n;i++){
        if(c[i].size()>2)
            if(check(i))
                ans++;
    }
    printf("%d\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值