Python数据分析与机器学习

目录

Python数据分析与机器学习

1. 概述

2. 数据分析常用库

NumPy

Pandas

Matplotlib

3. 机器学习常用库

Scikit - learn

TensorFlow 和 PyTorch

4. 数据分析与机器学习流程

数据收集

数据清洗与预处理

特征工程

模型选择与训练

模型评估与优化

模型部署

5. 学习建议

Python数据分析与机器学习

1. 概述

Python 凭借其丰富的库和简洁的语法,在数据分析和机器学习领域占据重要地位。数据分析是对数据进行收集、清洗、转换和可视化等操作,以提取有价值的信息;机器学习则是让计算机通过数据学习模式和规律,从而进行预测和决策。

2. 数据分析常用库

NumPy

  • 功能:提供了高效的多维数组对象和处理这些数组的工具,是许多其他数据分析和机器学习库的基础。
  • 示例代码
import numpy as np

# 创建一个一维数组
arr = np.array([1, 2, 3, 4, 5])
print(arr)

# 进行数学运算
print(arr * 2)

Pandas

  • 功能:用于数据处理和分析,提供了 DataFrame 和 Series 等数据结构,方便进行数据的读取、清洗、转换和统计分析。
  • 示例代码
import pandas as pd

# 创建一个 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
print(df)

# 计算年龄的平均值
average_age = df['Age'].mean()
print(average_age)

Matplotlib

  • 功能:用于数据可视化,能够创建各种类型的图表,如折线图、柱状图、散点图等。
  • 示例代码
import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.linspa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值