unordered_map.count(key)返回的是key的出现次数!如果存在则为1!
454.四数相加II:力扣
383. 赎金信:力扣
15. 三数之和:力扣
18. 四数之和:力扣
454.四数相加II
给你四个整数数组 nums1
、nums2
、nums3
和 nums4
,数组长度都是 n
,请你计算有多少个元组 (i, j, k, l)
能满足:
0 <= i, j, k, l < n
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
解法:
两个哈希表,分别记录前两个数组和后两个数组的所有数字对之和,以及对应和的出现次数。
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
unordered_map<int, int> sum1, sum2;
int temp = 0;
for(int i = 0; i < nums1.size(); i++){
for(int j = 0; j < nums1.size(); j++){
temp = nums1[i] + nums2[j];
if(sum1.count(temp)) sum1[temp] += 1;
else sum1[temp] = 1;
temp = nums3[i] + nums4[j];
if(sum2.count(temp)) sum2[temp] += 1;
else sum2[temp] = 1;
}
}
int res = 0;
for(auto i: sum1){
if(sum2.count(-i.first)) res += i.second * sum2[-i.first];
}
return res;
}
改进:只用一个哈希表记录前两个数组的所有数字对之和,遍历后两个数组时,直接更新输出结果。
unordered_map.count(key)返回的是key的出现次数!如果存在则为1!
383. 赎金信:
解法:经典哈希表
bool canConstruct(string ransomNote, string magazine) {
unordered_map<char, int> hash;
for (auto i: magazine){
if(hash.count(i)) hash[i] += 1;
else hash[i] = 1;
}
for (auto i: ransomNote){
if(hash.count(i) && hash[i] > 0) hash[i] -= 1;
else return false;
}
return true;
}
15. 三数之和
讲解视频:代码随想录
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
样例:
输入
nums = [-2,0,0,2,2]
输出
[[-2,0,2]] # 不是[[-2,0,2], [-2,0,2]]
解法:
1. 哈希法
可以很快得到三元组,但去重很麻烦。
2. 双指针法
遍历区间起点i,固定i,在(i, nums.size())中寻找满足条件的j和k。
剪枝:先将数组进行排序。
有重复元素时需要去重!
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
int len = nums.size(), temp = 0;
int i = 0, j = 1, k = len - 1;
sort(nums.begin(), nums.end());
while(i < len - 2){
j = i + 1, k = len - 1;
if(i > 0 && nums[i] == nums[i - 1]){
i++;
continue;
}
while(j < k){
temp = nums[i] + nums[j] + nums[k];
if(temp == 0){
res.push_back(vector<int>{nums[i], nums[j], nums[k]});
}
if(temp <= 0){
j++;
while(j < len && nums[j] == nums[j - 1]) j++;
}
if(temp >= 0){
k--;
while(k > 0 && nums[k] == nums[k + 1]) k--;
}
}
i++;
}
return res;
}