Leetcode300.最长递增子序列
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
解法:
动态规划,利用dp[i]保存以nums[i]结尾的最长递增子序列长度。
dp[i]更新:对于j从0到i - 1的取值,dp[i] = max(dp[j] + 1, dp[i]);
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
vector<int> dp(nums.size(), 1);
int res = 1;
for(int i = 1; i < nums.size(); i++){
for(int j = 0; j < i; j++){
if(nums[i] > nums[j]) dp[i] = max(dp[j] + 1, dp[i]);
}
res = max(res, dp[i]);
}
return res;
}
};
674. 最长连续递增序列
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
vector<int> dp(nums.size(), 1);
int res = 1;
for(int i = 1; i < nums.size(); i++){
if(nums[i - 1] < nums[i]) dp[i] = dp[i - 1] + 1;
res = max(res, dp[i]);
}
return res;
}
};
718. 最长重复子数组
子数组:连续数组
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7] 输出:3 解释:长度最长的公共子数组是 [3,2,1] 。
解法:
dp[i][j]表示以nums1[i - 1]和nums2[j -1]为结尾的最长重复子数组的长度。
由于子数组需要连续,更新的时候只考虑nums1[i - 1] == nums2[j -1]时的情况
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
int res = 0;
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0)); // 最长公共连续子数组长度
for(int i = 1; i <= nums1.size(); i++){
for(int j = 1; j <= nums2.size(); j++){
if(nums1[i - 1] == nums2[j - 1]){
dp[i][j] = max(dp[i - 1][j - 1] + 1, dp[i][j]);
}
res = max(res, dp[i][j]);
}
}
return res;
}
};
1143. 最长公共子序列
给定两个字符串 text1
和 text2
,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0
。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,
"ace"
是"abcde"
的子序列,但"aec"
不是"abcde"
的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
解法:
子序列和子数组的区别是可以不连续!
因此dp数组存放的最长序列长度可以不包含ij
dp[i][j] = max(p[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1] + 1)
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int res = 0;
vector<vector<int>> dp(text1.length() + 1, vector<int>(text2.length() + 1, 0)); // 以i, j结尾的最长公共子序列长度,可以不包括ij
for(int i = 1; i <= text1.length(); i++){
for(int j = 1; j <= text2.length(); j++){
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
if(text1[i - 1] == text2[j - 1]){
dp[i][j] = max(dp[i - 1][j - 1] + 1, dp[i][j]);
}
res = max(res, dp[i][j]);
}
}
return res;
}
};
1035. 不相交的线
在两条独立的水平线上按给定的顺序写下 nums1
和 nums2
中的整数。
现在,可以绘制一些连接两个数字 nums1[i]
和 nums2[j]
的直线,这些直线需要同时满足满足:
-
nums1[i] == nums2[j]
- 且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
解法:
转化为最长公共子序列
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
for(int i = 1; i <= nums1.size(); i++){
for(int j = 1; j <= nums2.size(); j++){
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
if(nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = max(dp[i - 1][j - 1] + 1, dp[i][j]);
}
}
}
return dp[nums1.size()][nums2.size()];
}
};
53. 最大子数组和
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
解法1:
经典贪心算法
模拟人思考问题的思维。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = nums[0], temp = nums[0];
for(int i = 1; i < nums.size(); i++){
if(temp < 0) {
temp = nums[i];
}
else{
temp = temp + nums[i];
}
res = max(res, temp);
}
return res;
}
};
392. 判断子序列
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"
是"abcde"
的一个子序列,而"aec"
不是)。
进阶:
如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?
解法1:
动态规划:编辑距离问题
解法2:
经典双指针
class Solution {
public:
bool isSubsequence(string s, string t) {
int i = 0, j = 0;
while(i < s.length() && j < t.length()){
if(s[i] == t[j]){
i++, j++;
}
else j++;
}
if(i == s.length()) return true;
else return false;
}
};
115.不同的子序列
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)
题目数据保证答案符合 32 位带符号整数范围。
解法:
要求所有子序列的个数,不能用双指针做。
动态规划:编辑距离问题