假设有N盏灯(N为不大于5000的正整数)从1到N按顺序依次编号,初始时全为开启状态;有M个人......题目如图

本文通过C语言实现了一个经典的灯泡开关问题解决方案。程序首先计算每个灯泡被切换次数(即因子数量),然后找出最终处于关闭状态的灯泡(因子数量为奇数)。涉及数组操作及条件判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目详情

#include<stdio.h>

void Check(int* p, int m, int n) //数组计数每个数对应的因子个数
{
	int i,j;
	for (i = 1; i <= n; i++)
	{
		for (j = 1; j <= i&&j<=m; j++)
			if (i % j == 0)
				p[i]++;
	}
}
void IsPrime(int* p, int n)  //判断奇数
{
	printf("最终为关闭状态的灯有:");
	for (int i = 1; i <= n; i++)  
		if (p[i] % 2 == 1)  //若因子数为奇数则输出
			printf("%d ", i);
}

int main()
{
	int M, N;  //M为学生数,N为灯个数
	printf("请依次输入学生个数、灯个数:\n");
	scanf("%d%d", &M, &N);
	int* p = (int* )malloc((N+1) * sizeof(int)); //堆空间申请一个(N+1)单位的类数组空间
	for (int i = 0; i <= N; i++) //初始化数组为0
		p[i] = 0;
	Check(p, M, N);
	IsPrime(p, N+1);
	return 0;
}

运行结果:
在这里插入图片描述
在这里插入图片描述

### 回答1题目假设有n个盏灯(n为大于5000正整数),从1到n按顺序编号初始全部处于开启状态;同有m个人(m为大于n的正整数),从1到m依次编号。每个人依次进行操作,第i个人将所有编号为i的倍数的灯的开关状态进行一次取反操作(即开启的变为关闭,关闭的变为开启)。 ### 回答2: 每个人可以按照以下规则对灯进行操作: 1. 第i个人只对所有序号为i的倍数的灯进行操作(包括打开和关闭); 2. 如果灯原来是开着的,那么第i个人对它进行一次操作后,它就会关闭;如果它原来是关着的,那么第i个人对它进行一次操作后,它就会打开。 问最终有多少盏灯是开着的。 首先需要明确的是,在操作灯的过程中,若一个数i的因子个数为奇数,则它最后状态会变为开启,反之,若它的因子个数为偶数,则最后状态会为关闭。因为一个数的因子总是成对出现的,除了平方数,它自身作为因子只会算一次。这是实际问题中的一个数学规律。 所以我们只需要确定1到n每个数的因子个数,即可得到最终结果。可以采用暴力的方法,在1到n循环,依次确定每个数的因子个数。间复杂度为O(n^2)。但是此n最大为5000,效率会比较低。 更高效的方法是采用线性筛法求1到n每个数的因子个数。首先,每个数a的因子个数一定等于它的因子b的因子个数加1,其中b为a的质因子。所以,我们可以在筛素数的同,预处理出每个数i的最小质因子p[i],以及它生成的后继数p[i]*j(j为i的包括p[i]因子的因子)的最小质因子p[i*j],再根据上述规律求出每个数的因子个数。 最后,根据得到的因子个数统计开着的灯的个数即可。 代码如下: ### 回答3: 每个人顺序来到这些灯前,会按照以下规则对部分灯进行开关操作: 1. 第一个人将所有编号为奇数的灯关闭; 2. 第二个人将所有编号为3的倍数的灯进行开关操作:闭合状态则打开,打开状态则关闭; 3. 第三个人将所有编号为4的倍数的灯进行开关操作:闭合状态则打开,打开状态则关闭; 4. 以此类推,第k个人依次对所有编号为k的倍数的灯进行开关操作,即闭合状态则打开,打开状态则关闭; 最后统计还有多少盏灯处于打开状态。 解题思路: 这道题先注意读题,其他博客上方法很多其实都编到了题目中,甚至题目所强调的m<=n都没看到(我翻了两页没看到)。 正题:这道题有一重循环肯定是跑掉的,即m个人依次对每个编号为k的倍数的灯进行开关操作的这个循环。 现在处理k和m,我们先把步骤3解析一下,编号为4的倍数的灯进行开关操作。它本来就是开的,变成闭的;是闭的,这里变成开的,开关相反。类似题目中快排的标杆左右划分,以下称为原始开关状态。 其原理是,一次开关操作后,编号为4倍数+1的灯的状态会被改变,编号为8倍数+1的灯的状态又会被改变一次,编号12倍数+1的灯的状态又会被改变一次。经过检查得知,K倍数+1也一样。所以,每到一个人1~K-1号灯的亮灭状态会改变的。 于是可以把1~n灯的原始开关状态预处理出来,用bool类型存储。 以上面编号为4的情况作为例子: $ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 1 &2 &3 &4 &5 &6 &7 &8 &9 \\ \hline \texttt{O} & \texttt{O} &\texttt{O} &X &\texttt{O} &\texttt{O} &\texttt{O} &X &\texttt{O}\\ \hline \end{array} $ O为初始化开的,X为初始化关的,1~3号状态变,4、8状态变化,5、9依然是开着的。 再从1到m枚举每个人,将其负责的灯编号以及它的倍数对应状态进行转化,转化方式由原始开关状态决定,用异或运算符^表示: bool[i]=bool[i]^1 //将灯的开关状态取反 获取数组的某个元素的状态就能用bool[n]的形式来操作。因为排除了需要转化的部分,需要枚举1~k-1,所以最后只需要统计bool数组中为true的元素个数即可。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nepu_bin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值