倍增 and RMQ 问题

什么是倍增?

倍增,从字面及数学的角度就是 ”成倍增长“ 的意思。这能使线性问题转化为数级处理,优化时间复杂度。

不是人话是不是?听不懂是不是? 看这里。这是指我们在进行递推时,如果状态空间很大,通常的线性递推无法满足时间与空间复杂度的要求,那么我们可以通过成倍增长的方式,只递推状态空间中在 2 2 2 的整数次幂位置上的值作为代表。

因为基本定理:任意整数可以表示成若干个2的次幂项的和 这一性质,使用之前求出的代表值拼成所需的值。

”倍增“ 与 ”二进制划分“ 两个思想相互结合,降低了求解很多问题的时间与空间复杂度。快速幂其实就是 “倍增” 与 ”二进制划分“ 思想的一种体现 (不然你以为 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间复杂度是吹出来的?)

倍增的主要应用为:快速幂,RMQ 问题,ST 算法,LCA 等。

RMQ 问题 / ST 算法

关于 100 多行的线段树不香吗 … \dots 你说的对,但我太蒟蒻了,不会。

著名的 ST 表大法能在 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间复杂度预处理后以 O ( 1 ) O(1) O(1) 的时间复杂度查询对于一个序列,任意一对区间 [ l , r ] \lbrack l, r \rbrack [l,r] 中的最值是多少。

f i , j f_{i, j} fi,j 为序列中区间 [ i , i + 2 j − 1 ] \lbrack i, i + 2^j - 1 \rbrack [i,i+2j1] 中的最值,也就是 i ∼ 2 j i \sim 2^j i2j 中的最值。

由于使用倍增思想,所以子区间长度成倍增长,所以当我们计算 f i , j f_{i, j} fi,j 时可以从之前的左半边和右半边转移过来,即 f i , j = max ⁡ ( f i , j − 1 , f i + 2 j − 1 , j − 1 ) f_{i, j} = \max(f_{i, j - 1}, f_{i + 2^{j - 1}, j - 1}) fi,j=max(fi,j1,fi+2j1,j1)

void ST1()
{
    for (int i = 1; i <= n; i++)
        f[i][0] = a[i];

    int num = log(n) / log(2) + 1;
    for (int j = 1; j <= num; j++)
    {
        for (int i = 1; i <= n - (1 << j) + 1; i++)
            f[i][j] = min(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
    }
    return ;
}

当询问区间最值时,我们计算出一个值 k k k,满足 2 k < r − l + 1 ≤ 2 k + 1 2^k < r - l + 1 \le 2^{k + 1} 2k<rl+12k+1,即为 2 k 2^k 2k 是小于区间范围长度前提下最大的 k k k

而这个值可能小于区间长度,所以我们要分两段进行求值,分别是 “从 l l l 开始的 2 k 2^k 2k 个数” 和 “ r r r 前的 2 k 2^k 2k 个数。

so  max ⁡ ( a l ∼ a r ) = max ⁡ ( f l , k , f r − 2 k + 1 , k ) \text{so } \max(a_l \sim a_r) = \max(f_{l, k}, f_{r - 2^k + 1, k}) so max(alar)=max(fl,k,fr2k+1,k)

int ST2(int l, int r)
{
    int k = log(r - l + 1) / log(2);
    return min(f[l][k], f[r - (1 << k) + 1][k]);
}

注:ST 表可以求 最大/最小值,你只需要把 max ⁡ \max max 替换为 min ⁡ \min min 即可。

板子:lg P1816lg P3865

参考资料

https://www.dotcpp.com/course/947

https://www.cnblogs.com/boranhoushen/p/16557961.html

https://blog.nowcoder.net/n/63f14dae8a194960844facb24c23e58f?from=nowcoder_improve

图论算法:树上倍增法解决LCA问题 - hugeYlh - 博客园

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值