Frequent values(倍增RMQ)

Frequent values

Description:
You are given a sequence of n integers a1 , a2 , … , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , … , aj.

Input:
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , … , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, …, n}) separated by spaces. You can assume that for each i ∈ {1, …, n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output:
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input:
10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0
Sample Output:
1
4
3
题目大意:
给出n个数和m个询问(l,r),对于每个询问求出(l,r)之间连续出现次数最多的次数。
思路:
RMQ算法
预处理一个数组:
if(num[i]==num[i-1])
a[i]=a[i-1]+1;
else
a[i]=1;
对于每个询问(l,r),分为两个部分,前半部分求与l之前相同的数的个数直到t,后半部分从t开始直接用RMQ求解最大值就行了。
最后结果为max(前半部分,后半部分)。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=100010;
int n,m,num[maxn],a[maxn],f[maxn][20];
int init()
{
    int f=1,p=0;char c=getchar();
    while(c>'9'||c<'0'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){p=p*10+c-'0';c=getchar();}
    return f*p;
}
void prepare()
{
    memset(f,-1,sizeof(-1));
    for(int i=1;i<=n;i++)
    f[i][0]=a[i];
    int k=log((double)(n+1))/log(2.0);
    for(int j=1;j<=k;j++)
      for(int i=1;i+(1<<j)-1<=n;i++)
      f[i][j]=max(f[i][j-1],f[i+(1<<j-1)][j-1]);
}
int rmq(int l,int r)
{
    if(l>r) return 0;
    int k=log((double)(r-l+1))/log(2.0);
    return max(f[l][k],f[r-(1<<k)+1][k]);
}
int main()
{
    int l,r;
    while(cin>>n&&n)
    {
        m=init();
        for(int i=1;i<=n;i++)
        {
            num[i]=init();
            if(i==1)
            {
                a[i]=1;
                continue;
            }
            if(num[i]==num[i-1])
            a[i]=a[i-1]+1;
            else a[i]=1;
        }
        prepare();
        for(int i=1;i<=m;i++)
        {
            l=init();r=init();
            int t=l;
            while(t<=r&&num[t]==num[t-1])
            t++;
            int ans=rmq(t,r);
            ans=max(ans,t-l);
            printf("%d\n",ans);
        }
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值