34. 在排序数组中查找元素的第一个和最后一个位置

该博客讨论了如何在给定的非递减有序整数数组中,利用二分查找算法高效地找到目标值的起始和结束位置。题目提供了一个中等难度的力扣(LeetCode)问题,要求在O(logn)的时间复杂度内解决。示例展示了两种解决方案,一种是简单的线性搜索,另一种是改进的二分查找方法。后者在找到目标值后分别向前和向后扫描以确定范围。

力扣

难度中等1176

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

进阶:

  • 你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

通过次数321,737提交次数757,933

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int [] ans = {-1,-1};
        for(int i = 0;i<nums.length;i++)
        {
            if(ans[0]==-1 && nums[i]==target) ans[0] = i;
            if(nums[i]==target) ans[1] = i;
        }
        return ans;
    }
}

二分查找:

class Solution {
    public int[] searchRange(int[] nums, int target) {

        //二分查找
        int start = 0;
        int end = nums.length-1;
        int mid;
        int [] ans = new int[2];
         ans[0] = -1;
         ans[1] = -1;
        while(start<=end)
        {
            mid = (end-start)/2+start;
            if(nums[mid]==target)
            {
                ans[0] = mid;
                ans[1] = mid;
                for(int i=mid;i<nums.length;i++)
                {
                    if(nums[i]==target) ans[1] = i;
                }
                for(int i=mid;i>=0;i--)
                {
                    if(nums[i]==target) ans[0] = i;
                }
                return ans;
            }
            else if(nums[mid]>target) end=mid-1;
            else start = mid+1;
        }
        return ans;
    }
}

 

### 查找排序数组元素首次末次出现的索引 对于在已排序数组查找目标元素第一个最后一个位置的问题,可以采用二分查找的方法来高效解决问题。由于数组已经是排序状态,这使得二分查找成为理想的选择。 下面是一个 C++ 实现的例子: ```cpp #include <vector> using namespace std; class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { if (nums.empty()) return {-1, -1}; int firstPosition = findFirst(nums, target); if (firstPosition == -1) return {-1, -1}; // 如果找不到第一个位置,则直接返回 int lastPosition = findLast(nums, target); return {firstPosition, lastPosition}; } private: int findFirst(const vector<int>& nums, int target){ int start = 0; int end = nums.size() - 1; while(start + 1 < end){ // 当start与end相邻时停止循环 int mid = start + (end - start) / 2; if (nums[mid] >= target) end = mid; // 寻找左边界,当等于target也向左侧收缩范围 else start = mid; } if (nums[start] == target) return start; if (nums[end] == target) return end; return -1; } int findLast(const vector<int>& nums, int target){ int start = 0; int end = nums.size() - 1; while(start + 1 < end){ int mid = start + (end - start) / 2; if (nums[mid] <= target) start = mid; // 同样寻找右边界,即使mid处等于target也要尝试更大的可能 else end = mid; } if (nums[end] == target) return end; if (nums[start] == target) return start; return -1; } }; ``` 此代码定义了一个 `Solution` 类,其中包含了两个私有成员函数用于分别定位目标值第一次最后一次出现的位置[^1]。通过调整标准二分查找逻辑,可以在O(log n)的时间复杂度内完成任务。如果找到了目标值,则会进一步确认其确切的起始终止位置;如果没有找到,则返回[-1,-1][^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值