题目思路
先把题目目的翻译一下 题目的目的就是想让我们找到一条第k+1长的最小边
所以我们可以用二分来找那条边权 用双端队列来判断是否满足条件
每次遍历 大于mid的边算一条边权为1的边 小于等于mid的边算边权为0的边
这里二分还有一个注意事项
假设有三条长度为mid的边 然后有k-2条大于mid的边 那么这时候最优解应该是mid 但是二分出的结果
是f(u) < k 但是若check mid-1 的边 会得出f(u - 1) > k 所以我们让判断结果为 f(u) <= k
如果满足 则r = mid 最后答案为r
代码
#include <iostream>
#include <cstring>
#include <algorithm>
#include <deque>
using namespace std;
const int N = 1010, M = 20010;
int n, m, k;
int h[N], e[M], ne[M], w[M], idx;
int dist[N];
bool st[N];
deque<int> q;
void add(int a, int b, int c)
{
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++ ;
}
bool check(int u)
{
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st);
q.push_back(1);
dist[1] = 0;
while (q.size())
{
int t = q.front();
q.pop_front();
if (st[t]) continue;
st[t] = true;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i], x = w[i] > u;
if (dist[j] > dist[t] + x)
{
dist[j] = dist[t] + x;
if (!x) q.push_front(j);
else q.push_back(j);
}
}
}
return dist[n] > k;
}
int main()
{
cin >> n >> m >> k;
memset(h, -1, sizeof h);
while (m -- )
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c), add(b, a, c);
}
int l = 0, r = 1e6 + 10;
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) l = mid + 1;
else r = mid;
}
if (r == 1e6 + 10) puts("-1");
else cout << r << endl;
return 0;
}