acwing 340.通信线路

在郊区有 N 座通信基站,P 条 双向 电缆,第 i 条电缆连接基站 Ai 和 Bi。

特别地,1 号基站是通信公司的总站,N 号基站位于一座农场中。

现在,农场主希望对通信线路进行升级,其中升级第 i 条电缆需要花费 Li。

电话公司正在举行优惠活动。

农产主可以指定一条从 1 号基站到 N 号基站的路径,并指定路径上不超过 K 条电缆,由电话公司免费提供升级服务。

农场主只需要支付在该路径上剩余的电缆中,升级价格最贵的那条电缆的花费即可。

求至少用多少钱可以完成升级。

输入格式

第 1 行:三个整数 N,P,K。

第 2..P+1 行:第 i+1 行包含三个整数 Ai,Bi,Li。

输出格式

包含一个整数表示最少花费。

若 1 号基站与 N 号基站之间不存在路径,则输出 −1。

数据范围

0≤K<N≤1000,

1≤P≤10000,

1≤Li≤1000000

输入样例:

5 7 1

1 2 5

3 1 4

2 4 8

3 2 3

5 2 9

3 4 7

4 5 6

输出样例:

4

题意翻译:一个无向图中,求顶点1到n的最短路径,N 个点,P 条边,求 1 到 N 的最小花费,如果经过的边数小于 K ,花费为 0 ,否则花费为 K+1 大的边权值,若 1 号与 N 号之间不存在路径,则输出 −1。

前置知识:

分层图

参考博客:AcWing 340. 通信线路 - AcWing

为什么要有分层图?

显然,在本题中,同一个点有不同的操作(免费或带权),且这两种状态不能同时存在于同一个图上。我们的策略是把图复制分成若干层,让两种状态分别处于两层图中,这样就实现了适合本题的建图

 图片来源:AcWing 340. 通信线路 - AcWing

 怎么建图呢?

for(int i=1,x,y,z;i<=p;i++)
    {
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);    //本层建边
        for(int j=1,z1=0;j<=k;j++)
        {
            add(x+(j-1)*n,y+j*n,z1);    //第j层和第j+1层间的建边
            add(y+(j-1)*n,x+j*n,z1);
            add(x+j*n,y+j*n,z);
            add(y+j*n,x+j*n,z);    //第j+1层建边
        }
    }

由于最终花费是权值最大的边

z=max(edge,dis[x]); //edge是当前边权值
if ( dis[y] > z ) dis[y] = z;

#include<bits/stdc++.h>
using namespace std;

const int N=1000000+10,M=10000000+10;
typedef pair<int,int> PII;
int n,p,k;
int tot=0;
priority_queue<PII> q;
struct node
{
	int ver,nex,edge;
}po[M];
int head[N],dis[N];
bool v[N];

void add(int x,int y,int z)
{
	po[++tot].ver=y,po[tot].edge=z;
	po[tot].nex=head[x],head[x]=tot;
}

void dijkstra()
{
	memset(dis,0x3f,sizeof(dis));
	dis[1]=0;
	q.push(make_pair(0,1));
	while(q.size())
	{
		int x=q.top().second;
		q.pop();
		if(v[x]) continue;
		v[x]=true;
		for(int i=head[x];i;i=po[i].nex)
		{
			int y=po[i].ver,z=max(po[i].edge,dis[x]);
			if(dis[y]>z)
			{
				dis[y]=z;
				q.push(make_pair(-dis[y],y));
			}
		}
	}
}

int main()
{
	scanf("%d%d%d",&n,&p,&k);
	for(int i=1,x,y,z;i<=p;i++)
	{
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z);
		add(y,x,z);
		for(int j=1,z1=0;j<=k;j++)
		{
			add(x+(j-1)*n,y+j*n,z1);
			add(y+(j-1)*n,x+j*n,z1);
			add(x+j*n,y+j*n,z);
			add(y+j*n,x+j*n,z);
		}
	}
	for(int i=1,z=0;i<=k;i++)
		add(i*n,(i+1)*n,z);
	
	dijkstra();
	
	if(dis[(k+1)*n]==1061109567) puts("-1");
	else printf("%d",dis[(k+1)*n]);
	return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值