P2470 [SCOI2007]压缩

一道不错的区间dp题 思考了好长时间
题目链接

题目思路

我们令 f[i][j][k] 为由i到j且其中是否存在M的区间长度最小值
可以分类讨论
对于f[i][j][0] 即区间内不存在M的情况 我们可以想到 如果区间内前半段和后半段相等 我们是可以分解为 f[i][mid][0] + 1 即把后半段变为R
所以对于每个长度的 f[i][j][0]都处理一次 求最小值 则f[i][j][0] = f[i][k] + j - k;
再去考虑f[i][j][1]
我们可以遍历区间内的每个点 往里面加M 则可以得到
f[i][j][1] = min(f[i][j][1], min(f[i][k][0], f[i][k][1]) + 1 + min(f[k + 1][j][0], f[k + 1][j][1]));

ac代码

#include <bits/stdc++.h>

using namespace std;

const int N = 110;

string st;
int n, f[N][N][2];

bool check(int l, int r)
{
	int mid = l + r >> 1;
	if ((r - l + 1) & 1) return false;
	for (int i = l; i <= mid; i ++ )
		if (st[i] != st[i + mid - l + 1]) return false;
	return true;
}

int main()
{
	cin >> st;
	n = st.size();
	st = ' ' + st;
	
	memset(f, 0x3f, sizeof f);
	for (int i = 1; i <= n; i ++ )
		for (int j = i; j <= n; j ++ )
			f[i][j][0] = f[i][j][1] = j - i + 1;
			
	for (int len = 2; len <= n; len ++ )
		for (int i = 1; i + len - 1 <= n; i ++ )
		{
			int j = i + len - 1;
			if (check(i, j)) f[i][j][0] = min(f[i][i + j >> 1][0] + 1, f[i][j][0]);
			for (int k = i; k < j; k ++ )
				f[i][j][0] = min(f[i][j][0], f[i][k][0] + j - k);
			for (int k = i; k < j; k ++ )
				f[i][j][1] = min(f[i][j][1], min(f[i][k][0], f[i][k][1]) + 1 + min(f[k + 1][j][0], f[k + 1][j][1]));
		}
	
	int ans = min(f[1][n][0], f[1][n][1]);
	printf("%d\n", ans);
	
	return 0;
}
### 关于SCOI2005 互不侵犯问题的DFS解法 对于SCOI2005 互不侵犯这一问题,采用深度优先搜索(DFS)的方法同样能够解决问题。这种方法通过尝试每一种可能的情况来寻找满足条件的结果。 #### DFS解题思路 在解决此问题时,DFS算法会逐行放置国王,并确保任何两个国王之间不会互相攻击。具体来说: - 使用二进制数表示每一行的状态,其中`1`代表当前位置已放置国王,`0`则为空白。 - 对于每一个新的行,在所有未被先前行中的国王威胁的位置上尝试放置新国王。 - 如果当前行的所有列都遍历完毕,则回溯至上一行继续探索其他可能性。 - 当成功放置了指定数量的国王后,计数器加一;如果某次递归达到了最后一行且仍未完成目标,则返回并调整之前的决策。 为了提高效率,还需要提前计算出哪些状态是合法的——即不存在连续两位都是`1`的状态,这可以通过简单的枚举实现[^4]。 #### Python代码实现 下面是一个基于上述逻辑编写的Python程序片段用于求解该问题: ```python def dfs(row, col_mask, left_diag, right_diag): global n, k, ans if row == n: if sum(bin(col)[2:].count('1') for col in cols) == k: ans += 1 return for i in range(1 << n): if bin(i).count('1') + sum(cols[:row]) > k: continue ok = ((~col_mask & ~left_diag & ~right_diag & (i)) == i) if not ok or '11' in bin(i): continue new_col_mask = col_mask | i new_left_diag = (left_diag | i) << 1 new_right_diag = (right_diag | i) >> 1 dfs(row + 1, new_col_mask, new_left_diag, new_right_diag) n, k = map(int, input().split()) cols = [0]*n ans = 0 dfs(0, 0, 0, 0) print(ans) ``` 这段代码定义了一个名为`dfs()`函数来进行深度优先搜索,它接收四个参数分别表示当前处理的是哪一行(`row`)、当前列上的占用情况(`col_mask`)、左斜线方向上的占用情况(`left_diag`)以及右斜线方向上的占用情况(`right_diag`)。全局变量`n`, `k`用来保存棋盘大小和要放置的国王数目,而`ans`则是最终答案的数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值