一道不错的区间dp题 思考了好长时间
题目链接
题目思路
我们令 f[i][j][k] 为由i到j且其中是否存在M的区间长度最小值
可以分类讨论
对于f[i][j][0] 即区间内不存在M的情况 我们可以想到 如果区间内前半段和后半段相等 我们是可以分解为 f[i][mid][0] + 1 即把后半段变为R
所以对于每个长度的 f[i][j][0]都处理一次 求最小值 则f[i][j][0] = f[i][k] + j - k;
再去考虑f[i][j][1]
我们可以遍历区间内的每个点 往里面加M 则可以得到
f[i][j][1] = min(f[i][j][1], min(f[i][k][0], f[i][k][1]) + 1 + min(f[k + 1][j][0], f[k + 1][j][1]));
ac代码
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
string st;
int n, f[N][N][2];
bool check(int l, int r)
{
int mid = l + r >> 1;
if ((r - l + 1) & 1) return false;
for (int i = l; i <= mid; i ++ )
if (st[i] != st[i + mid - l + 1]) return false;
return true;
}
int main()
{
cin >> st;
n = st.size();
st = ' ' + st;
memset(f, 0x3f, sizeof f);
for (int i = 1; i <= n; i ++ )
for (int j = i; j <= n; j ++ )
f[i][j][0] = f[i][j][1] = j - i + 1;
for (int len = 2; len <= n; len ++ )
for (int i = 1; i + len - 1 <= n; i ++ )
{
int j = i + len - 1;
if (check(i, j)) f[i][j][0] = min(f[i][i + j >> 1][0] + 1, f[i][j][0]);
for (int k = i; k < j; k ++ )
f[i][j][0] = min(f[i][j][0], f[i][k][0] + j - k);
for (int k = i; k < j; k ++ )
f[i][j][1] = min(f[i][j][1], min(f[i][k][0], f[i][k][1]) + 1 + min(f[k + 1][j][0], f[k + 1][j][1]));
}
int ans = min(f[1][n][0], f[1][n][1]);
printf("%d\n", ans);
return 0;
}