一、总述
状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式。
很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用。
状压dp其实就是将状态压缩成2进制来保存 其特征就是看起来有点像搜索,每个格子的状态只有1或0 ,是另一类非常典型的动态规划
举个例子:有一个大小为n*n的农田,我们可以在任意处种田,现在来描述一下某一行的某种状态:
设n = 9;
有二进制数 100011011(九位),每一位表示该农田是否被占用,1表示用了,0表示没用,这样一种状态就被我们表示出来了:见下表
为了更好的理解状压dp,首先介绍位运算相关的知识。
- ’&’符号,x&y,会将两个十进制数在二进制下进行与运算(都1为1,其余为0) 然后返回其十进制下的值。例如3(11)&2(10)=2(10)。
- ’|’符号,x|y,会将两个十进制数在二进制下进行或运算(都0为0,其余为1) 然后返回其十进制下的值。例如3(11)|2(10)=3(11)。
- ’^’符号,x^y,会将两个十进制数在二进制下进行异或运算(不同为1,其余 为0)然后返回其十进制下的值。例如3(11)^2(10)=1(01)。
- ’~’符号,~x,按位取反。例如~101=010。
- ’<<’符号,左移操作,x<<2,将x在二进制下的每一位向左移动两位,最右边用0填充,x<<2相当于让x乘以4。 ’>>’符号,是右移操作,x>>1相当于给x/2,去掉x二进制下的最右一位
1.判断一个数字x二进制下第i位是不是等于1。(最低第1位) 方法:if(((1<<(i−1))&x)>0) 将1左移i-1位,相当于制造了一个只有第i位 上是1,其他位上都是0的二进制数。然后与x做与运算,如果结果>0, 说明x第i位上是1,反之则是0。
2.将一个数字x二进制下第i位更改成1。 方法:x=x|(1<<(i−1)) 证明方法与1类似。
3.将一个数字x二进制下第i位更改成0。 方法:x=x&~(1<<(i−1))
4.把一个数字二进制下最靠右的第一个1去掉。 方法:x=x&(x−1)
二、典型例题
【例题1】[SCOI2005]互不侵犯
题目描述
在 n×n(1<=n<=10) 的棋盘上放 k(0<=k<n×n)个国王,国王可攻击相邻的 8 个格子,求使它们无法互相攻击的方案总数。
输入格式
输入有多组方案,每组数据只有一行,包含两个整数 n 和 k。
输出格式
每