逆元

转载 2018年04月16日 23:26:31

%SDFZSPLI

乘法逆元

定义

ax1modp,则称xamodp意义下的逆元,记为xa1modp

当然,a也是xmodp意义下的逆元

ab=ab1

几乎所有模意义下的除法都需要逆元

有逆元的充要条件

amodp意义下有逆元的充要条件:(a,p)=1

逆元的求法
EXGCD

若求amodp意义下的逆元,则可以转化为求解如下方程

ax+py=1

有EXGCD的相关知识可以得到,当且仅当(a,p)=1时有解(有逆元的充要条件的证明)

费马小定理

如果p为质数,则ap11modp

aap21

ap2a1

欧拉定理

将费马小定理中的p2换为φ(p)1即可

p可以不是质数

递推

用于O(n)预处理[1n]的逆元

构造p=ki+r

ki+r0modp

ki=r

i1=kr1

其中k=pi,r=p%i

i1=piinv[p%i]

为了防止出现负数,通常的写法是这样的

inv[i]=(mod-mod/i)*inv[mod%i]%mod;

还是逆元之O(n)阶乘逆元。。。

除草 做一个题发现了一个逆元的知识盲点,就是阶乘的逆元 然后发现了可以这样 fac[0]=fac[1]=1; for(int i=2;i inv[0]=inv[1]=1; inv[MAXN]=quip...
  • the301stdoub
  • the301stdoub
  • 2015-07-23 10:11:48
  • 2321

逆元+快速幂+模板

今天我们来探讨逆元在ACM-ICPC竞赛中的应用,逆元是一个很重要的概念,必须学会使用它。   对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元。   逆元一般用扩展欧几里...
  • hhu1506010220
  • hhu1506010220
  • 2016-07-30 19:37:34
  • 592

求逆元的方法汇总

传送门http://www.lydsy.com/JudgeOnline/problem.php?id=3223题目大意[1,n],每次翻转[L,R],输出最后的序列题解Splay模板题 翻转标记下放...
  • slongle_amazing
  • slongle_amazing
  • 2016-02-15 16:17:47
  • 4968

求逆元的几种方法

http://blog.csdn.net/xwxcy/article/details/51493193 (数学渣,下面的文字可能有误,欢迎指教) 乘法逆元的定义貌似是基于群给出的,比较简单...
  • ilblue
  • ilblue
  • 2017-01-31 15:29:17
  • 1339

线性求逆元算法

摘自:http://blog.csdn.net/acdreamers/article/details/8220787 其实有些题需要用到模的所有逆元,这里为奇质数。那么如果用快速幂求时间复杂度为,...
  • qq_34564984
  • qq_34564984
  • 2016-08-23 16:57:16
  • 2683

阶乘和阶乘逆元

瞬间移动有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第nn行第mm列的格子有几种方案,答案对10...
  • kiwi_berrys
  • kiwi_berrys
  • 2017-02-02 11:30:51
  • 851

逆元 递推求逆元

其实有些题需要用到1-p模p的所有逆元,这里p为奇质数。那么如果用快速幂求时间复杂度为O(p log(p)), 如果对于一个1000000级别的素数,这样做的时间复杂度是很高了。实际上有的算法,有一...
  • Frods
  • Frods
  • 2016-12-25 11:35:55
  • 473

ACM 乘法逆元 模板

乘法逆元
  • nickwong_
  • nickwong_
  • 2014-08-24 21:24:56
  • 2501

逆元的几种求法(扩展欧几里得,费马小定理或欧拉定理,特例,打表等)

乘法逆元 对于缩系中的元素,每个数a均有唯一的与之对应的乘法逆元x,使得ax≡1(mod n) 一个数有逆元的充分必要条件是gcd(a,n)=1,此时逆元唯一存在 逆元的含义:模n意义下,1个数a...
  • guhaiteng
  • guhaiteng
  • 2016-08-04 22:24:15
  • 11144

组合数取模(逆元+快速幂)

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu   LightOJ 1067   ...
  • lu_1110
  • lu_1110
  • 2016-08-08 14:24:25
  • 1703
收藏助手
不良信息举报
您举报文章:逆元
举报原因:
原因补充:

(最多只允许输入30个字)