[LUOGU] P3354 [IOI2005]Riv 河流

题目描述
几乎整个Byteland王国都被森林和河流所覆盖。小点的河汇聚到一起,形成了稍大点的河。就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海。这条大河的入海口处有一个村庄——名叫Bytetown。

在Byteland国,有n个伐木的村庄,这些村庄都座落在河边。目前在Bytetown,有一个巨大的伐木场,它处理着全国砍下的所有木料。木料被砍下后,顺着河流而被运到Bytetown的伐木场。Byteland的国王决定,为了减少运输木料的费用,再额外地建造k个伐木场。这k个伐木场将被建在其他村庄里。这些伐木场建造后,木料就不用都被送到Bytetown了,它们可以在运输过程中第一个碰到的新伐木场被处理。显然,如果伐木场座落的那个村子就不用再付运送木料的费用了。它们可以直接被本村的伐木场处理。

注:所有的河流都不会分叉,形成一棵树,根结点是Bytetown。

国王的大臣计算出了每个村子每年要产多少木料,你的任务是决定在哪些村子建设伐木场能获得最小的运费。其中运费的计算方法为:每一吨木料每千米1分钱。

输入输出格式
输入格式:
第一行包括两个数 n(2≤n≤100),k(1≤k≤50,且 k≤n)。n为村庄数,k为要建的伐木场的数目。除了Bytetown外,每个村子依次被命名为123……n,Bytetown被命名为0。

接下来n行,每行3个整数:

wi——每年i村子产的木料的块数(0≤wi≤10000)

vi——离i村子下游最近的村子(即i村子的父结点)(0≤vi≤n)

di——vi到i的距离(千米)。(1≤di≤10000)

保证每年所有的木料流到bytetown的运费不超过2,000,000,00050%的数据中n不超过20。

输出格式:
输出最小花费,单位为分。

输入输出样例
输入样例#1: 
4 2
1 0 1
1 1 10
10 2 5
1 2 3
输出样例#1: 
4

树上分组背包+约定祖先

#include<iostream>
#include<cstdio>
using namespace std;

inline int rd() {
    int ret=0,f=1;
    char c;
    while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
    while(isdigit(c))ret=ret*10+c-'0',c=getchar();
    return ret*f;
}

const int MAXN=155;

struct Edge {
    int next,to,w;
} e[MAXN];
int ecnt,head[MAXN];
inline void add(int x,int y,int w) {
    e[++ecnt].next = head[x];
    e[ecnt].to = y;
    e[ecnt].w = w;
    head[x] = ecnt;
}

int n,k;
int val[MAXN];
int f[MAXN][MAXN][MAXN];
int g[MAXN][MAXN][MAXN];
int stack[MAXN],top;
int dep[MAXN];

void dfs(int x) {
    stack[++top]=x;
    for(int i=head[x]; i; i=e[i].next) {
        int v=e[i].to;
        dep[v]=dep[x]+e[i].w;
        dfs(v);
        for(int fa=1; fa<=top; fa++) {
            for(int j=k; j>=0; j--) {
                f[x][j][stack[fa]]+=f[v][0][stack[fa]];
                g[x][j][stack[fa]]+=f[v][0][x];
                for(int u=0; u<=j; u++) {//
                    f[x][j][stack[fa]]=min(f[x][j][stack[fa]],f[x][j-u][stack[fa]]+f[v][u][stack[fa]]);
                    g[x][j][stack[fa]]=min(g[x][j][stack[fa]],g[x][j-u][stack[fa]]+f[v][u][x]);
                }
            }
        }
    }
    for(int fa=1; fa<=top; fa++) {
        for(int j=0; j<=k; j++) {
            if(j>=1) f[x][j][stack[fa]]=min(f[x][j][stack[fa]]+val[x]*(dep[x]-dep[stack[fa]]),g[x][j-1][stack[fa]]);
            else f[x][j][stack[fa]]+=val[x]*(dep[x]-dep[stack[fa]]);
        }
    }


    top--;
}

int main() {
    n=rd();
    k=rd();
    for(int i=1; i<=n; i++) {
        int y,w;
        val[i]=rd();
        y=rd();
        w=rd();
        add(y,i,w);
    }
    dfs(0);
    cout<<f[0][k][0];
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值