题目
原题链接:点这里
总体思路–>问题转化
- 先将原本的柠檬树分解成为多个圆台,再单独看圆台的投影
- 一个圆在地面的投影,是等比例的,而一条竖线的投影长度 d = h tan α d=\cfrac{h}{\tan \alpha} d=tanαh,这样也就得到了整棵树在平面上面的投影


-
问题转换为面积并,显然自适应辛普森积分套上去就行了


-
还有一个易错的点,就是函数 F ( x ) F(x) F(x),每次找的时候都要 O ( n ) O(n) O(n)找一遍最大值,因为大的影子可能会覆盖掉前后很多区间小的影子。
(PS:此处引用谷站的图,不过谷站的图忽略了我说的这种情况,我就在上面做了修改)

算法思路
- 由于影子关于 x x x轴对称,故我们只计算 x x x轴的直角梯形,最后 a n s ∗ 2 ans*2 ans∗2即可
- 然后我们需要快速计算出,对于 x = X x=X x=X,它和梯形和圆的交点的最大 Y Y Y是多少
- 所以我们需要预处理直角梯形的左右边界,斜边的斜率和截距
- 然后
O
(
n
)
O(n)
O(n)跑一遍即可知道答案,此处不能找到就
break,因为圆、梯形之间以及自身可能会有覆盖,所以要取max - 解决了
f(x)函数,剩下的自适应辛普森积分套进去就行了
代码实现
// #pragma GCC optimize("O3")
#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>
using namespace std;
#define debug(x) cerr << #x << ": " << x << '\n'
#define bd cerr << "----------------------" << el
#define el '\n'
#define cl putchar('\n')
#define pb push_back
#define eb emplace_back
#define x first
#define y second
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define loop(i, a, b) for (int i = (a); i < (b); i++)
#define dwn(i, a, b) for (int i = (a); i >= (b); i--)
#define ceil(a, b) (a + (b - 1)) / b
#define ms(a, x) memset(a, x, sizeof(a))
#define inf 0x3f3f3f3f
#define db double
typedef long long LL;
typedef long double LD;
typedef pair<int, int> PII;
typedef pair<db, db> PDD;
typedef vector<int> vci;
typedef map<int, int> mii;
typedef mii::iterator mii_it;
const int N = 510, M = 2e6 + 10, E = 1e3 + 10, md = 1e9 + 7;
const double PI = acos(-1), eps = 1e-8;
int T, n, m;
db alpha, cot;
struct Circle
{
db x, R;
} c[N]; //记录圆
struct qujian
{
db l, r, k, b;
} sc[N]; //只记录梯形
//梯形和梯形之间还是有圆弧段的
int sign(db x)
{
if (fabs(x) < eps)
return 0;
if (x < 0)
return -1;
return 1;
}
int dcmp(db x, db y)
{
if (fabs(x - y) < eps)
return 0;
if (x < y)
return -1;
return 1;
}
db calc(db c, db a)
{
return sqrt(c * c - a * a);
}
void get_k_b(int a, int b) //圆x和圆y之间的梯形
{
int cmp = dcmp(c[a].R, c[b].R);
if (cmp == 0) //两个圆半径相等
{
sc[a].l = c[a].x;
sc[a].r = c[b].x;
sc[a].k = 0;
sc[a].b = c[a].R;
return;
}
db AC = c[b].x - c[a].x, AJ = fabs(c[a].R - c[b].R); //如图
db ly, ry; //梯形的上底,下底
if (cmp == 1)
{
sc[a].l = c[a].x + c[a].R * AJ / AC; //梯形左端
sc[a].r = c[b].x + c[b].R * AJ / AC; //梯形右端
ly = calc(c[a].R, sc[a].l - c[a].x);
ry = calc(c[b].R, sc[a].r - c[b].x);
}
else
{
sc[a].l = c[a].x - c[a].R * AJ / AC;
sc[a].r = c[b].x - c[b].R * AJ / AC;
ly = calc(c[a].R, c[a].x - sc[a].l);
ry = calc(c[b].R, c[b].x - sc[a].r);
}
sc[a].k = (ly - ry) / (sc[a].l - sc[a].r); //联立方程求解k,b
sc[a].b = ly - sc[a].k * sc[a].l;
return;
}
db f(db x)
{
db ans = 0;
loop(i, 0, n)
{
//x在圆内,因为梯形之间有圆弧段
//dcmp==0的情况没必要计算,圆上一点的长度为0
if (dcmp(x, c[i].x - c[i].R) > 0 && dcmp(x, c[i].x + c[i].R) < 0)
ans = max(ans, calc(c[i].R, c[i].x - x));
//x在梯形内
if (dcmp(x, sc[i].l) >= 0 && dcmp(x, sc[i].r) <= 0)
ans = max(ans, sc[i].k * x + sc[i].b); //y = kx+b
}
return ans;
}
db simpson(db l, db r)
{
auto mid = (l + r) / 2;
return (r - l) * (f(l) + 4 * f(mid) + f(r)) / 6;
}
db asr(db l, db r, db s)
{
auto mid = (l + r) / 2;
db left = simpson(l, mid), right = simpson(mid, r);
if (!dcmp(left + right, s))
return left + right; //left和right分的更细,进度更高
else
return asr(l, mid, left) + asr(mid, r, right); //继续自适应
}
int main()
{
cin.tie(0);
cout.tie(0);
cin >> n >> alpha;
cot = 1.0 / tan(alpha); //求解出cot,接下来也只会用到cot
cin >> c[0].x;
c[0].x *= cot;
rep(i, 1, n)
{
cin >> c[i].x;
c[i].x = c[i].x * cot + c[i - 1].x;
}
loop(i, 0, n)
cin >>
c[i].R;
c[n].R = 0; //树顶是一个顶点,为圆锥
rep(i, 0, n - 1)
get_k_b(i, i + 1);
db L = c[0].x - c[0].R, R = c[n].x; //影最左边,和影子最右边
loop(i, 0, n)
{
L = min(c[i].x - c[i].R, L); //因为要考虑某个圆的影子特别大的情况
R = max(c[i].x + c[i].R, R);
}
printf("%.2lf\n", 2.0 * asr(L, R, simpson(L, R)));
//我们只计算了x轴上方的,故要乘以2
return 0;
}
本文讲解了如何通过分解柠檬树为圆台,利用自适应辛普森积分求解投影面积,重点提及了避免重复查找最大影子区域的优化技巧。算法涉及梯形与圆的交点计算和投影面积计算,提升效率的关键在于对称性和预处理边界信息。
355

被折叠的 条评论
为什么被折叠?



