P3385 【模板】负环

64 篇文章 0 订阅
43 篇文章 0 订阅
该博客介绍了如何利用Bellman-Ford算法处理包含负权边的图,并通过实例展示了如何寻找从源点到所有节点的最短路径。文章详细解释了算法的实现过程,并提供了C++代码实现。在代码中,通过队列进行广度优先搜索,当路径长度超过节点总数时判断存在负环并输出答案。
摘要由CSDN通过智能技术生成

【模板】负环 - 洛谷https://www.luogu.com.cn/problem/P3385

#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <cstring>
#include <set>
#include <cmath>
#include <map>
#include <cstdlib>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int MN = 65005;
const int MAXN = 1000010;
const int INF = 0x3f3f3f3f;
#define IOS ios::sync_with_stdio(false)
#define lowbit(x) ((x)&(-x))

int n, m;
int head[MAXN];
int nxt[MAXN];
int ver[MAXN];
int cost[MAXN];
int cnt;
int num[MAXN];
int d[MAXN];
inline void add(int x, int y, int c) {
	ver[++cnt] = y;
	cost[cnt] = c;
	nxt[cnt] = head[x];
	head[x] = cnt;
}
bool vis[MAXN];

inline void spfa() {
	memset(vis, 0, sizeof(vis));
	memset(d, 0x3f, sizeof(d));
	memset(num, 0, sizeof(num));
	d[1] = 0;
	queue<int> que;
	que.push(1);
	vis[1] = true;
	while (!que.empty()) {
		int x = que.front();
		que.pop();
		vis[x] = false;
		for (int i = head[x]; i; i = nxt[i]) {
			int y = ver[i], c = cost[i];
			if (d[y] > d[x] + c) {
				d[y] = d[x] + c;
				num[y] = num[x] + 1;
				if (num[y] > n) {
					printf("YES\n");
					return;
				}
				if (!vis[y]) {
					vis[y] = true;
					que.push(y);
				}
			}
		}
	}
	printf("NO\n");
}

int main() {
	int t;
	int x, y, c;
	scanf("%d", &t);
	while (t--) {
		memset(head, 0, sizeof(head));
		//	memset(nxt,0,sizeof(nxt));
		cnt = 0;
		scanf("%d %d", &n, &m);
		for (int i = 1; i <= m; i++) {
			scanf("%d %d %d", &x, &y, &c);
			if (c >= 0) {
				add(x, y, c);
				add(y, x, c);
			} else {
				add(x, y, c);
			}
		}
		spfa();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值