计数排序诞生于1954年,适用场景:数据大,范围小,啥意思,给公司员工按照年龄排序,假如2万个员工,但是年龄区间很小,这时候就可以用计数排序。
基本步骤:
源数组遍历,把每个元素出现的次数标记在计数数组对应下标上
遍历计数数组,从下标1元素开始,每个元素等于当前下标+ 前一个下标的值(记录该数字在排序后的出现位置)
倒叙遍历源数组,按照累加数组中记录的源数组中每个数据在排序后应该出现的位置,把数据赋值给有序数组。
来个图:
代码实现:
import java.util.Arrays;
public class CountSort {
public static void main(String[] args) {
int[] arr = {3, 5, 4, 6, 8, 4, 6, 4, 6, 9, 4};
System.out.println("源数组" + Arrays.toString(arr));
countSort(arr);
}
public static void countSort(int[] arr) {
//定义返回值
int[] res = new int[arr.length];
//定义计数数组[桶] 累加数组的大小是排序范围
int[] count = new int[10];
//遍历数组进行累加
for (int i = 0; i < arr.length; i++) {
//某个元素的下标一致,元素每出现一次,对应下标++
count[arr[i]]++;
}
//把【计数数组】变成【累加数组】,这两数组等长 首元素不管,次元素是当前元素+前一个元素
//累加数组的每一个值 等于 计数数组 对应的该下标之前 的所有下标值 相加的结果
//累加数组的每一个值是对应的计数数组的对应的下标值(元素)在源数组中最后出现的位置(比如第8个位置的源数组中的下标为7)
for (int i = 1; i < count.length; i++) {
count[i] = count[i] + count[i - 1];
}
System.out.println("累加数组" + Arrays.toString(count));
//倒叙源数组 通过count累加数组记录的相对位置 保证了排序的稳定性
for (int i = arr.length - 1; i >= 0; i--) {
res[--count[arr[i]]] = arr[i];
}
System.out.println("排序完成" + Arrays.toString(res));
}
}