对数函数的格式:
y=loga(底数)x (a>0且a≠1)
a为底数,x为真数
对数函数也有两种情况:
1.a>1
如果指数函数的a>1是爆炸性增长,那么对数函数的a>1就是缓慢性增长
如果指数函数和对数函数的底数一致,那么两个图像是1.3象限对称,对数函数总是拉指数函数的后腿
性质:
定义域:(0,正无穷)
值域:y∈R
单调递增函数
2.1>a>0
图像

缓慢递减,该底数函数和对数函数底数一致的时候,1.3象限对称
对数函数的公式
同底的指数和对数互为逆运算,可以相消。
公式1
简化写法:
lgn=log10(底数)n
公式2
简化写法:
lnx=loge(底数)x e≈2.71828...
公式3
loga(底数)1==0,真数为1的对数函数==0
loga(底数)a==1,底数和真数相等情况下==1
公式4
a^b=N和b=loga(底数)N,指数和对数同底互为逆运算(就是可以相互抵消)
公式5 e抬高
u^v = e^vlnu
该函数是幂指函数,并不是初等基本函数,我们要把它化解成以e为底的指数函数
(e为底的指数函数是最标准的指数函数)
e^u^v 是不成立的,我们要先给u^v加个对数,然后在变成以e为底的对数函数就相等了
e^lnu^v ,根据公式,v可以加到前面,就变成了了e^vlnu
公式6
loga(底数)M+loga(底数)N==loga(底数)^M+N,反之相减
公式7:
loga(底数)M^n = nloga(底数)M,最后的指数可以放在最前面
本文深入探讨了对数函数的概念,包括其格式、两种情况下的增长特性以及与指数函数的关系。对数函数的定义域是(0,正无穷),值域为实数,且具有单调性。重点介绍了对数函数的基本公式,如以10为底的对数简化、自然对数的定义以及底数为a的对数性质。此外,还阐述了对数的加减法则和指数与对数的互逆运算。通过对数函数的性质,帮助读者理解其在数学中的应用。
4264

被折叠的 条评论
为什么被折叠?



