对数函数

对数函数的格式:
y=loga(底数)x (a>0且a≠1)
a为底数,x为真数

对数函数也有两种情况:
1.a>1
如果指数函数的a>1是爆炸性增长,那么对数函数的a>1就是缓慢性增长
如果指数函数和对数函数的底数一致,那么两个图像是1.3象限对称,对数函数总是拉指数函数的后腿在这里插入图片描述
性质:
定义域:(0,正无穷)
值域:y∈R
单调递增函数

2.1>a>0
图像
在这里插入图片描述
缓慢递减,该底数函数和对数函数底数一致的时候,1.3象限对称

对数函数的公式
同底的指数和对数互为逆运算,可以相消。

公式1
	简化写法:
		lgn=log10(底数)n
公式2
	简化写法:
		lnx=loge(底数)x     e≈2.71828...
公式3
	loga(底数)1==0,真数为1的对数函数==0
	loga(底数)a==1,底数和真数相等情况下==1
公式4
	a^b=N和b=loga(底数)N,指数和对数同底互为逆运算(就是可以相互抵消)
公式5   e抬高
	u^v = e^vlnu
		该函数是幂指函数,并不是初等基本函数,我们要把它化解成以e为底的指数函数
		(e为底的指数函数是最标准的指数函数)
		e^u^v 是不成立的,我们要先给u^v加个对数,然后在变成以e为底的对数函数就相等了
		e^lnu^v ,根据公式,v可以加到前面,就变成了了e^vlnu
公式6
	loga(底数)M+loga(底数)N==loga(底数)^M+N,反之相减
公式7:
	loga(底数)M^n = nloga(底数)M,最后的指数可以放在最前面
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值