8个常用泰勒展开式

由泰勒展开式简化常用等价无穷小
2

1的无穷次幂指数的解法
1、u^v ,u~1,v~无穷,可以直接 等价于 e^(v(u-1)
因为lin u ~u-1, 当u~1时成立
还有碰见根号要记着通分
最后还要记着拉格郎日中值定理 f(b)- f(a) = f'(科森)*(b-a)

1
本文深入解析了8个常用的泰勒展开式,利用泰勒展开简化等价无穷小计算,并探讨了1的无穷次幂的解法。文章还提及了拉格朗日中值定理的应用,以及在数学极限计算中处理根号和通分的技巧。
8个常用泰勒展开式

由泰勒展开式简化常用等价无穷小
2

1的无穷次幂指数的解法
1、u^v ,u~1,v~无穷,可以直接 等价于 e^(v(u-1)
因为lin u ~u-1, 当u~1时成立
还有碰见根号要记着通分
最后还要记着拉格郎日中值定理 f(b)- f(a) = f'(科森)*(b-a)

1
1735
8760
1万+

被折叠的 条评论
为什么被折叠?