1002、度度熊的王国战略
Problem Description
度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族。
哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士。
所以这一场战争,将会十分艰难。
为了更好的进攻哗啦啦族,度度熊决定首先应该从内部瓦解哗啦啦族。
第一步就是应该使得哗啦啦族内部不能同心齐力,需要内部有间隙。
哗啦啦族一共有n个将领,他们一共有m个强关系,摧毁每一个强关系都需要一定的代价。
现在度度熊命令你需要摧毁一些强关系,使得内部的将领,不能通过这些强关系,连成一个完整的连通块,以保证战争的顺利进行。
请问最少应该付出多少的代价。
哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士。
所以这一场战争,将会十分艰难。
为了更好的进攻哗啦啦族,度度熊决定首先应该从内部瓦解哗啦啦族。
第一步就是应该使得哗啦啦族内部不能同心齐力,需要内部有间隙。
哗啦啦族一共有n个将领,他们一共有m个强关系,摧毁每一个强关系都需要一定的代价。
现在度度熊命令你需要摧毁一些强关系,使得内部的将领,不能通过这些强关系,连成一个完整的连通块,以保证战争的顺利进行。
请问最少应该付出多少的代价。
Input
本题包含若干组测试数据。
第一行两个整数n,m,表示有n个将领,m个关系。
接下来m行,每行三个整数u,v,w。表示u将领和v将领之间存在一个强关系,摧毁这个强关系需要代价w
数据范围:
2<=n<=3000
1<=m<=100000
1<=u,v<=n
1<=w<=1000
第一行两个整数n,m,表示有n个将领,m个关系。
接下来m行,每行三个整数u,v,w。表示u将领和v将领之间存在一个强关系,摧毁这个强关系需要代价w
数据范围:
2<=n<=3000
1<=m<=100000
1<=u,v<=n
1<=w<=1000
Output
对于每组测试数据,输出最小需要的代价。
Sample Input
2 1 1 2 1 3 3 1 2 5 1 2 4 2 3 3
Sample Output
1 3
思路:
拿到题第一反应是网络流,然而好久不碰题,只记得DINIC 了,于是搜了一发Stoer-Wagner模板。
马上吃了一发TLE,一看时间限制为20000 MS,看来卡参数了,查了下资料能用Fibonacci Heap优化,
然而基本是理论AC的比较多,后来看讨论说数据很水,最后就并查集判断是否联通加上计算 顶点相连的边权和的最小值水了一发。
注意有自环的情况。
代码:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAX = 3005;
int pre[MAX];
int sum[MAX];
int flag;
int find (int x){
int r =x;
if(pre[r]!=r){
pre[r]=find(pre[r]);
}
return pre[r];
}
void join (int x,int y){
int fx=find(x);
int fy=find(y);
if(fx==fy){
flag=1;
return;
}
pre[fx]=pre[fy];
return ;
}
void init(int n){
int i;
for(i=1;i<=n;++i)pre[i] = i;
flag = 0;
}
int main (){
int m,n;
while(scanf("%d%d",&n,&m)!=EOF){
int i,j;
int a,b,c;
int fa,fb;
int cnt = n-1;
memset(sum,0,sizeof(sum));
init(n);
for(i=0;i<m;i++){
scanf("%d%d%d",&a,&b,&c);
if(a==b)
continue;
sum[a]+=c;
sum[b]+=c;
int cs1=find(a);
int cs2=find(b);
if(cs1!=cs2){
cnt--;
join(a,b);
}
}
if(cnt){
printf("0\n");
}
else{
sort(sum+1,sum+n+1);
printf("%d\n",sum[1]);
}
}
return 0;
}
ps:
好久没写题了,想起来还是有点难受。
今天信息楼停电了,难得能休息一天了。
抽空来补个题,不过现在也只能写写水题了(好像以前也是:sad)
考研准备的也挺难受的,这几个月充满了困惑和不自信,真是漫长而磨练人。
这过程实在是太长了,
长的让我都忘记了当初考研的目的。
可能未来的某一天我会发现算法工程师并不是我梦想中的职业,
那我也只会苦笑下吧,
也许世上很多事情,
本来就是徒劳无功的吧。