题目:
http://acm.hdu.edu.cn/showproblem.php?pid=6081
题意:
Problem Description
度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族。
哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士。
所以这一场战争,将会十分艰难。
为了更好的进攻哗啦啦族,度度熊决定首先应该从内部瓦解哗啦啦族。
第一步就是应该使得哗啦啦族内部不能同心齐力,需要内部有间隙。
哗啦啦族一共有n个将领,他们一共有m个强关系,摧毁每一个强关系都需要一定的代价。
现在度度熊命令你需要摧毁一些强关系,使得内部的将领,不能通过这些强关系,连成一个完整的连通块,以保证战争的顺利进行。
请问最少应该付出多少的代价。
思路:
从题意上看,明显是全局最小割,但是由于数据的原因,可以水过去,贴个堆优化stoer-wagner算法模板,记录一下。代码参考自:http://www.cnblogs.com/oyking/p/7340753.html
//复杂度(nmlogm),因此适合稀疏图,稠密图直接用没有堆优化的算法
//点下标从1开始
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> pii;
const int N = 3000 + 10, M = 20000 + 10, INF = 0x3f3f3f3f;
struct edge
{
int to, cost, next;
}g[M];
int cnt, head[N], link[N];//link类似于链表
int par[N];
int dis[N];//dis数组用来表示该点与A集合中所有点之间的边的长度之和
bool vis[N];//用来标记是否该点加入了A集合
void init(int n)
{
for(int i = 1; i <= n; i++) par[i] = i;
}
void add_edge(int v, int u, int cost)
{
g[cnt].to = u, g[cnt].cost = cost, g[cnt].next = head[v], head[v] = cnt++;
}
int ser(int x)
{
int r = x, i = x, j;
while(r != par[r]) r = par[r];
while(par[i] != r) j = par[i], par[i] = r, i = j;
return r;
}
void unite(int x, int y)
{//把y合并到x中,反过来也对
int p = x;
while(~ link[p]) p = link[p];
link[p] = y;
par[y] = x;
}
int min_cut_phase(int n, int &s, int &t)
{
memset(vis, 0, sizeof vis);
memset(dis, 0, sizeof dis);
priority_queue<pii> que;
t = 1;
while(--n)
{
vis[s = t] = true;
for(int i = s; ~i; i = link[i])//更新dis数组,把合并到s中的点全部取出来
for(int j = head[i]; ~j; j = g[j].next)
{
int v = ser(g[j].to);//g[j].to可能已经合并到其他点上了
if(! vis[v]) que.push(make_pair(dis[v] += g[j].cost, v));
}
t = 0;
while(! t)
{
if(que.empty()) return 0; //图不联通
pii p = que.top(); que.pop();
if(dis[p.second] == p.first) t = p.second;
}
}
return dis[t];
}
int stoer_wagner(int n)
{
int ans = INF, s, t;
for(int i = n; i > 1; i--)
{
ans = min(ans, min_cut_phase(i, s, t));
if(ans == 0) break;
unite(s, t);
}
return ans;
}
int main()
{
int n, m;
while(~ scanf("%d%d", &n, &m))
{
init(n);
cnt = 0;
memset(head, -1, sizeof head);
memset(link, -1, sizeof link);
int a, b, c;
for(int i = 1; i <= m; i++)
{
scanf("%d%d%d", &a, &b, &c);
add_edge(a, b, c), add_edge(b, a, c);
}
printf("%d\n", stoer_wagner(n));
}
return 0;
}
另外一个模板(没看懂):
#include <bits/stdc++.h>
//#include <ext/pb_ds/priority_queue.hpp>
#define rep(i,n) for(int i=1;i<=n;++i)
#define inf 0x3f3f3f3f
#define M 100005
#define N 3005
using namespace std;
//__gnu_pbds::priority_queue<int> q;
struct Eedge
{
int x,y,w;
} e[M];
struct edge
{
int v,c,f;
} ee[2][M];
struct node
{
int len,pos;
};
int operator <(const node &a,const node &b)
{
return a.len<b.len;
}
int cmp(Eedge x,Eedge y)
{
if(x.x==y.x)return x.y<y.y;
return x.x<y.x;
}
int b[2][N],d[N];
priority_queue<node> q;
int n,m,ans,x,y,z,tot[2],top,tp,ts,tr;
bool f[N],r;
int tab[N];
void adds(bool p,int x,int y,int w)
{
ee[p][++tot[p]]=(edge)
{
y,w,b[p][x]
};
b[p][x]=tot[p];
}
void add(bool p,int x,int y,int w)
{
adds(p,x,y,w);
adds(p,y,x,w);
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
memset(b,0,sizeof b);
tot[0]=tot[1]=0;
ans=inf;
rep(i,m)
{
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
if(e[i].x>e[i].y)swap(e[i].x,e[i].y);
}
sort(e+1,e+m+1,cmp);
top=0;
rep(i,m)if(e[top].x!=e[i].x||e[top].y!=e[i].y)e[++top]=e[i];
else e[top].w+=e[i].w;
m=top;
rep(i,m)if(e[i].x!=e[i].y)add(0,e[i].x,e[i].y,e[i].w);
r=0;
rep(zz,min(n-1,max(400,n/2-1)))
{
memset(d,0,sizeof d);
memset(f,0,sizeof f);
d[1]=inf;
q.push((node)
{
d[1],1
});
tp=0;
while(!q.empty())
{
x=q.top().pos;
q.pop();
if(f[x])continue;
for(int i=b[r][x]; i; i=ee[r][i].f)
{
int v=ee[r][i].v;
if(!f[v])d[v]+=ee[r][i].c,q.push((node){d[v],v});
}
f[x]=1;
++tp;
if(tp==n-zz+1)ts=x;
if(tp==n-zz)tr=x;
}
tp=0;
for(int i=b[r][ts]; i; i=ee[r][i].f)tp+=ee[r][i].c;
r^=1;
ans=min(ans,tp);
memset(b[r],0,sizeof b[r]);
tot[r]=0;
rep(i,n)if(i!=tr&&i!=ts)
{
for(int j=b[r^1][i]; j; j=ee[r^1][j].f)
if(ee[r^1][j].v!=tr&&ee[r^1][j].v!=ts)adds(r,i,ee[r^1][j].v,ee[r^1][j].c);
}
top=0;
memset(tab,0,sizeof tab);
for(int i=b[r^1][ts]; i; i=ee[r^1][i].f)if(ee[r^1][i].v!=tr)tab[ee[r^1][i].v]+=ee[r^1][i].c;
for(int i=b[r^1][tr]; i; i=ee[r^1][i].f)if(ee[r^1][i].v!=ts)tab[ee[r^1][i].v]+=ee[r^1][i].c;
rep(i,n)if(tab[i])add(r,ts,i,tab[i]);
}
printf("%d\n",ans);
}
}