POJ 1325 Kőnig's Theorem

http://poj.org/problem?id=1325

The minimum vertex cover bipartite graph

According to the Kőnig's theorem

The maximum matching problem and the minimum vertex cover problem are equivalent

so the problem is easy

just using the Hungarian algorithm to solve

but noticed that the machine is in 0 status

so when you build the graph through the adjacency list

you should not to add the edge with 0 vertex

code of AC:

#include<iostream>
#include<cstring>
using namespace std;
const int N=2e3+10;
int head[N],ver[N],Next[N],v[N],match[N];
int tot=0;
void add(int x,int y){
	ver[++tot]=y;
	Next[tot]=head[x];
	head[x]=tot;
}
bool dfs(int x){
	for(int i=head[x];i;i=Next[i]){
		int y=ver[i];
		if(v[y]) continue;
		v[y]=1;
		if(match[y]==0||dfs(match[y])){
			match[y]=x;
			return 1;
		}
	}
	return 0;
}
int main(){
	int n,m,k,a,b,c;
	while(cin>>n&&n){
		cin>>m>>k;
		tot=0;
		for(int i=0;i<N;++i){
			head[i]=ver[i]=Next[i]=v[i]=match[i]=0;
		}
		for(int i=1;i<=k;++i){
			cin>>a>>b>>c;
			if(b*c)
				add(b,c);
		}
		int ans=0;
		for(int i=0;i<n;++i){
			memset(v,0,sizeof v);
			if(dfs(i)) ++ans;
		}
		cout<<ans<<endl;
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值