BZOJ3534 矩阵树

#include<bits/stdc++.h>
using namespace std; 
const int N=55;
double a[N][N],A[N][N];
void gauss(int n){
	for(int i=1;i<=n;++i){
		for(int j=i;j<=n;++j){
			if(fabs(a[j][i])>1e-8){
				for(int k=1;k<=n;++k)swap(a[i][k],a[j][k]);
			}
		}
		for(int j=1;j<=n;++j){
			if(i==j)continue;
			double rate=a[j][i]/a[i][i];
			for(int k=i;k<=n;++k)a[j][k]-=a[i][k]*rate;
		}
	}
}
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)cin>>a[i][j];
	double ans=1;
	for(int i=1;i<=n;++i)for(int j=i;j<=n;++j)ans=ans*(1-a[i][j]);
	for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)a[i][j]=a[i][j]/(1-a[i][j]);
	for(int i=1;i<=n;++i){
		for(int j=1;j<=n;++j){
			if(i!=j)a[i][i]-=a[i][j];
		}
	}
	gauss(n-1);
	for(int i=1;i<n;++i)ans=ans*a[i][i];
	printf("%.10lf\n",fabs(ans));
}

洛谷上WA了,上述写法精度有问题

#include<bits/stdc++.h>
using namespace std; 
const int N=55;
const double eps=1e-12;
double a[N][N];
void gauss(int n){
    for(int i=1;i<=n;++i){
        int mx=i;
        for(int j=i+1;j<=n;j++){
            if(fabs(a[j][i])>fabs(a[mx][i]))mx=j;
        }
        if(mx!=i)for(int j=1;j<=n;j++)swap(a[i][j],a[mx][j]);
        for(int j=1;j<=n;++j){
            if(i==j)continue;
            double rate=a[j][i]/a[i][i];
            for(int k=i;k<=n;++k)a[j][k]-=a[i][k]*rate;
        }
    }
}
int main(){
    int n;
    cin>>n;
    for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)scanf("%lf",&a[i][j]);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(fabs(a[i][j])<eps)a[i][j]=eps;
            if(fabs(1.0-a[i][j])<eps)a[i][j]=1-eps;
        }
    }
    double ans=1;
    for(int i=1;i<=n;++i)for(int j=i+1;j<=n;++j)ans=ans*(1-a[i][j]);
    for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)a[i][j]=a[i][j]/(1-a[i][j]);
    for(int i=1;i<=n;++i){
        for(int j=1;j<=n;++j){
            if(i!=j)a[i][i]-=a[i][j];
        }
    }
    gauss(n-1);
    for(int i=1;i<n;++i)ans=ans*a[i][i];
    printf("%.10lf\n",fabs(ans));
}

BZOJ和洛谷都A的版本

#include<bits/stdc++.h>
using namespace std; 
const int N=55;
const double eps=1e-8;
double a[N][N];
void gauss(int n){
	for(int i=1;i<=n;++i){
		int mx=i;
        for(int j=i+1;j<=n;j++){
            if(fabs(a[j][i])>fabs(a[mx][i]))mx=j;
        }
        if(mx!=i)for(int j=1;j<=n;j++)swap(a[i][j],a[mx][j]);
		for(int j=1;j<=n;++j){
			if(i==j)continue;
			double rate=a[j][i]/a[i][i];
			for(int k=i;k<=n;++k)a[j][k]-=a[i][k]*rate;
		}
	}
}
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)scanf("%lf",&a[i][j]);
	for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(fabs(a[i][j])<eps)a[i][j]=eps;
            if(fabs(1.0-a[i][j])<eps)a[i][j]=1-eps;
        }
    }
	double ans=1;
	for(int i=1;i<=n;++i)for(int j=i+1;j<=n;++j)ans=ans*(1-a[i][j]);
	for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)a[i][j]=a[i][j]/(1-a[i][j]);
	for(int i=1;i<=n;++i){
		for(int j=1;j<=n;++j){
			if(i!=j)a[i][i]-=a[i][j];
		}
	}
	gauss(n-1);
	for(int i=1;i<n;++i){
		if(fabs(a[i][i])<eps)ans=0;
		else ans=ans*a[i][i];
	}
	printf("%.10lf\n",fabs(ans));
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值