AI 时代学什么,怎么学 / 2024.12
怀疑一切和相信一切是两种同等方便的办法,因为两者都无须思考。
——亨利·庞加莱(1854—1912)
文章来自:公众号数科动力
微积分是微分学和积分学的统称,它的萌芽、发生与发展是一个跨文明、跨时代的累积过程,大体可以分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。前两阶段的工作,可以从欧洲的大批数学家一直追朔到古希腊的阿基米德的贡献(具体细节可以查看微积分发展 |(学法合集)参照前美国数学协会会长的建议)。最后一步则是由牛顿、莱布尼兹各自独立完成的。
若论对现代微积分的影响,莱布尼茨的成果可能更为深刻:
1 莱布尼茨发现,计算面积和变化率的问题从某种意义上说很有代表性,因为许多不同种类的问题都可以还原为这两类问题中的某一类。
2 他认识到,求解这两类问题的数学运算实际上彼此互为逆运算。今天,这些运算分别被称为积分和微分,它们彼此相反的这个事实就是人们所熟知的“微积分基本定理”。
3 莱布尼茨为这些运算发展出了一套恰当的符号(一直沿用至今),∫表示积分,d表示微分。他发现了实现微分和积分所需的数学规则。
(这三条论断引自第一推动丛书之《逻辑的引擎》)
由此便引出了本篇的主角——微积分基本定理。
微积分基本定理,也称为牛顿-莱布尼茨公式,是微积分学中的核心定理之一,它是联系导数、微分、不定积分、定积分的桥梁和纽带,联系了微分和积分这两个基本的数学运算。这个定理包含两个部分,通常称为第一基本定理和第二基本定理。
❝微积分基本定理的第一部分(原函数的存在性,在《简明微积分》中称“微分形式”):
如果函数()在区间上连续,是内的某一固定点,令
则在上可微,并且
即
这个定理保证了对于任何连续函数,我们总能找到至少一个原函数。
微积分基本定理的第二部分(定积分的计算,在《简明微积分》中称“积分形式”):
设在区间上可微,且等于连续函数,那么则有:
这个等式表明,我们可以使用原函数来计算定积分。
有了这个推论之后,求定积分的问题就可以转化为求原函数或不定积分的问题了。
微积分基本定理的几何意义
微积分基本定理的几何意义可以从原函数和定积分的角度来理解。
第一部分的几何意义:
原函数可以看作是从到区间内函数下的累积面积。随着在区间内变化,代表了从起点到任意点下方曲线与轴围成的面积。
由于是的一个原函数,意味着在某一点的瞬时变化率(即导数)正好等于在那一点的函数值。换句话说,当我们观察的图像时,曲线在任意点的切线斜率就等于在该点的高度。
第二部分的几何意义:
第二部分的定积分代表了函数在区间下方的总面积。这个面积可以通过计算原函数在点的值减去在点的值来获得,即。
这表明,定积分实际上测量的是函数的图形与轴之间,从到这一区间的垂直距离的累加。当在区间内始终非负时,这个面积就是直观上的几何面积;当取负值时,这部分可以视为“负面积”,从总面积中减去。
长按二维码—识别—关注