简明理解:微分中值定理(含罗尔中值定理、拉格朗日中值定理、柯西中值定理)...

ca27509783d3ab8bd6aad41cc157d9d7.png

AI 时代学什么,怎么学 / 2024.12

0ecf79b3be319b9ed49a0cea13e82d77.png

怀疑一切和相信一切是两种同等方便的办法,因为两者都无须思考。

——亨利·庞加莱(1854—1912)


文章来自:公众号【数科动力】

微分中值定理是一个更一般的形式,它包括了罗尔中值定理、拉格朗日中值定理和柯西中值定理。

罗尔中值定理(微分介值定理)

罗尔定理是以法国数学家米歇尔·罗尔(Michel Rolle)的名字命名的,他在1691年首次提出了这个定理。罗尔中值定理是微分中值定理的一个特例。

如果函数f(x)满足:在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)
那么使得

几何意义

满足条件的情况下,可以找到一条水平的切线

物理意义

如果用【位移——时间】来描述往返跑,那么起点和终点的唯一必然相同,于是有
因为往返跑要回到起点,所以跑的过程中必定有速度为0的点,也就是。(速度是位移的导数)

拉格朗日中值定理

拉格朗日中值定理(Lagrange’s Mean Value Theorem),是以意大利-法国数学家约瑟夫·路易·拉格朗日(Joseph-Louis Lagrange)的名字命名,他在1797年首次发表了这一定理。

拉格朗日的贡献在于他将罗尔定理推广到了更一般的情况。

罗尔定理要求函数在区间两端取相同的值,而拉格朗日中值定理没有这个限制。拉格朗日在他的研究中,通过罗尔定理的思路,进一步探索了函数导数与函数值之间的关系,最终形成了拉格朗日中值定理。

拉格朗日中值定理的表述是:

如果函数在闭区间上连续,并且在开区间内可导,f(x)在闭区间a,b上连续,并且在开区间(a,b)内可导,那么∃ξ∈(a,b),使得:

当时,就变回了罗尔中值定理

几何意义

这个定理表明,如果一个函数在一个区间内可导且连续,那么在这个区间内至少存在一个点,其微分与端点的连线平行(比昨天必须f(a)=f(b)的切线自由了一些);也有可能存在多个点的微分与端点的连线平行(能画多少条要看是怎样的函数)。

物理意义

如果用马路上的区间测速来描述,拉格朗日中值定理意味着可以测出在某一个时刻,车辆的瞬时速度等于整个运动过程中的平均速度。

(以下案例来自马同学图解微积分)假设在A点抓拍一次,得到a时间点的汽车位移f(a),在B点抓拍一次,得到b时间点的位移f(b),由此可以算出其平均速度为

  • 匀速时,在整个路程中的瞬时速度必然始终等于平均速度

  • 变速时,整个路程的瞬时速度有><=的情况,则当算出的平均速度大于公路限速时,就可以判定路程中必然至少有一点超速。

以下总结来自群友@小岛时光 特此鸣谢

a70d77d680b417a011da64702afc403d.png

柯西中值定理

柯西中值定理(Cauchy’s Mean Value Theorem),也称为柯西均值定理,是拉格朗日中值定理的一个推广,它是由法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)在1821年提出的。柯西通过考虑两个函数的导数,推广了拉格朗日中值定理的概念。

(柯西是第一个明确地、严格地定义了连续性和导数的数学家,他的工作为微积分的现代化奠定了基础。)

柯西中值定理的表述:

设函数和都是上的连续函数,且在上可微,且对任意点x∈(a,b),g′(x)≠0,则必有ξ∈(a,b),使得

66d99f4fa46336a26ae2dde67607566e.png

柯西中值定理和拉格朗日中值定理区别在于:

拉格朗日中值定理只涉及到一个函数,而柯西中值定理涉及到两个函数,并且要求第二个函数的导数不为零。

拉格朗日中值定理的结论是关于单个函数的导数与平均变化率的关系,而柯西中值定理的结论是关于两个函数的导数之比与它们的函数值之比的关系。

拉格朗日中值定理可以看作是柯西中值定理在g(x)=x这一特殊情况下的特例。

几何意义

在几何上,柯西中值定理可以理解为两个曲线在某个区间内的斜率之间存在关系。

假设有两个函数和想象他们为坐标轴上任意两条曲线,

它们在闭区间都有定义且连续,在开区间可导。

柯西中值定理告诉我们,两条曲线在区间内某个点处的切线斜率之比等于它们在区间两端点的连线的斜率。

物理意义

假设有一个物体的位置s(t)和时间t的关系,以及物体的速度v(t)和时间t的关系。如果我们考虑速度作为位置的函数,即v(s),那么柯西中值定理可以告诉我们,在物体的运动过程中,存在一个时刻,物体的瞬时加速度(速度的导数)与位置的瞬时变化率之比等于物体在整个运动过程中的平均加速度与平均位置变化率之比。

长按二维码—识别—关注

3ca1d5f94901169de47380d36c48f38e.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值