/*
* Copyright (c) 2016, 烟台大学计算机与控制工程学院
* All rights reserved。
* 文件名称 :1.cpp
* 作 者 :杨俊杰
* 完成日期 :2016年 11月24日
* 版 本 号 :v1.0
* 问题描述 : Dijkstra算法的验证
* 输出描述 :
附:测试用图结构
* Copyright (c) 2016, 烟台大学计算机与控制工程学院
* All rights reserved。
* 文件名称 :1.cpp
* 作 者 :杨俊杰
* 完成日期 :2016年 11月24日
* 版 本 号 :v1.0
* 问题描述 : Dijkstra算法的验证
* 输出描述 :
*/
- //1.头文件:graph.h,包含定义图数据结构的代码、宏定义、要实现算法的函数的声明;
- #ifndef GRAPH_H_INCLUDED
- #define GRAPH_H_INCLUDED
- #define MAXV 100 //最大顶点个数
- #define INF 32767 //INF表示∞
- typedef int InfoType;
- //以下定义邻接矩阵类型
- typedef struct
- {
- int no; //顶点编号
- InfoType info; //顶点其他信息,在此存放带权图权值
- } VertexType; //顶点类型
- typedef struct //图的定义
- {
- int edges[MAXV][MAXV]; //邻接矩阵
- int n,e; //顶点数,弧数
- VertexType vexs[MAXV]; //存放顶点信息
- } MGraph; //图的邻接矩阵类型
- //以下定义邻接表类型
- typedef struct ANode //弧的结点结构类型
- {
- int adjvex; //该弧的终点位置
- struct ANode *nextarc; //指向下一条弧的指针
- InfoType info; //该弧的相关信息,这里用于存放权值
- } ArcNode;
- typedef int Vertex;
- typedef struct Vnode //邻接表头结点的类型
- {
- Vertex data; //顶点信息
- int count; //存放顶点入度,只在拓扑排序中用
- ArcNode *firstarc; //指向第一条弧
- } VNode;
- typedef VNode AdjList[MAXV]; //AdjList是邻接表类型
- typedef struct
- {
- AdjList adjlist; //邻接表
- int n,e; //图中顶点数n和边数e
- } ALGraph; //图的邻接表类型
- //功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
- //参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
- // n - 矩阵的阶数
- // g - 要构造出来的邻接矩阵数据结构
- void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
- void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
- void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
- void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
- void DispMat(MGraph g);//输出邻接矩阵g
- void DispAdj(ALGraph *G);//输出邻接表G
- #endif // GRAPH_H_INCLUDED
- //2.源文件:graph.cpp,包含实现各种算法的函数的定义
- #include <stdio.h>
- #include <malloc.h>
- #include "graph.h"
- //功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
- //参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
- // n - 矩阵的阶数
- // g - 要构造出来的邻接矩阵数据结构
- void ArrayToMat(int *Arr, int n, MGraph &g)
- {
- int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
- g.n=n;
- for (i=0; i<g.n; i++)
- for (j=0; j<g.n; j++)
- {
- g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
- if(g.edges[i][j]!=0 && g.edges[i][j]!=INF)
- count++;
- }
- g.e=count;
- }
- void ArrayToList(int *Arr, int n, ALGraph *&G)
- {
- int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
- ArcNode *p;
- G=(ALGraph *)malloc(sizeof(ALGraph));
- G->n=n;
- for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
- G->adjlist[i].firstarc=NULL;
- for (i=0; i<n; i++) //检查邻接矩阵中每个元素
- for (j=n-1; j>=0; j--)
- if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
- {
- p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
- p->adjvex=j;
- p->info=Arr[i*n+j];
- p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
- G->adjlist[i].firstarc=p;
- }
- G->e=count;
- }
- void MatToList(MGraph g, ALGraph *&G)
- //将邻接矩阵g转换成邻接表G
- {
- int i,j;
- ArcNode *p;
- G=(ALGraph *)malloc(sizeof(ALGraph));
- for (i=0; i<g.n; i++) //给邻接表中所有头节点的指针域置初值
- G->adjlist[i].firstarc=NULL;
- for (i=0; i<g.n; i++) //检查邻接矩阵中每个元素
- for (j=g.n-1; j>=0; j--)
- if (g.edges[i][j]!=0) //存在一条边
- {
- p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
- p->adjvex=j;
- p->info=g.edges[i][j];
- p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
- G->adjlist[i].firstarc=p;
- }
- G->n=g.n;
- G->e=g.e;
- }
- void ListToMat(ALGraph *G,MGraph &g)
- //将邻接表G转换成邻接矩阵g
- {
- int i,j;
- ArcNode *p;
- g.n=G->n; //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
- g.e=G->e;
- for (i=0; i<g.n; i++) //先初始化邻接矩阵
- for (j=0; j<g.n; j++)
- g.edges[i][j]=0;
- for (i=0; i<G->n; i++) //根据邻接表,为邻接矩阵赋值
- {
- p=G->adjlist[i].firstarc;
- while (p!=NULL)
- {
- g.edges[i][p->adjvex]=p->info;
- p=p->nextarc;
- }
- }
- }
- void DispMat(MGraph g)
- //输出邻接矩阵g
- {
- int i,j;
- for (i=0; i<g.n; i++)
- {
- for (j=0; j<g.n; j++)
- if (g.edges[i][j]==INF)
- printf("%3s","∞");
- else
- printf("%3d",g.edges[i][j]);
- printf("\n");
- }
- }
- void DispAdj(ALGraph *G)
- //输出邻接表G
- {
- int i;
- ArcNode *p;
- for (i=0; i<G->n; i++)
- {
- p=G->adjlist[i].firstarc;
- printf("%3d: ",i);
- while (p!=NULL)
- {
- printf("-->%d/%d ",p->adjvex,p->info);
- p=p->nextarc;
- }
- printf("\n");
- }
- }
- //3.在同一项目(project)中建立一个源文件(如main.cpp),编制main函数,完成相关的测试工作。 例:
- #include <stdio.h>
- #include <malloc.h>
- #include "graph.h"
- #define MaxSize 100
- void Ppath(int path[],int i,int v) //前向递归查找路径上的顶点
- {
- int k;
- k=path[i];
- if (k==v) return; //找到了起点则返回
- Ppath(path,k,v); //找顶点k的前一个顶点
- printf("%d,",k); //输出顶点k
- }
- void Dispath(int dist[],int path[],int s[],int n,int v)
- {
- int i;
- for (i=0; i<n; i++)
- if (s[i]==1)
- {
- printf(" 从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);
- printf("%d,",v); //输出路径上的起点
- Ppath(path,i,v); //输出路径上的中间点
- printf("%d\n",i); //输出路径上的终点
- }
- else printf("从%d到%d不存在路径\n",v,i);
- }
- void Dijkstra(MGraph g,int v)
- {
- int dist[MAXV],path[MAXV];
- int s[MAXV];
- int mindis,i,j,u;
- for (i=0; i<g.n; i++)
- {
- dist[i]=g.edges[v][i]; //距离初始化
- s[i]=0; //s[]置空
- if (g.edges[v][i]<INF) //路径初始化
- path[i]=v;
- else
- path[i]=-1;
- }
- s[v]=1;
- path[v]=0; //源点编号v放入s中
- for (i=0; i<g.n; i++) //循环直到所有顶点的最短路径都求出
- {
- mindis=INF; //mindis置最小长度初值
- for (j=0; j<g.n; j++) //选取不在s中且具有最小距离的顶点u
- if (s[j]==0 && dist[j]<mindis)
- {
- u=j;
- mindis=dist[j];
- }
- s[u]=1; //顶点u加入s中
- for (j=0; j<g.n; j++) //修改不在s中的顶点的距离
- if (s[j]==0)
- if (g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])
- {
- dist[j]=dist[u]+g.edges[u][j];
- path[j]=u;
- }
- }
- Dispath(dist,path,s,g.n,v); //输出最短路径
- }
- int main()
- {
- MGraph g;
- int A[6][6]=
- {
- {0,50,10,INF,45,INF},
- {INF,0,15,INF,5,INF},
- {20,INF,0,15,INF,INF},
- {INF,20,INF,0,35,INF},
- {INF,INF,INF,30,0,INF},
- {INF,INF,INF,3,INF,0},
- };
- ArrayToMat(A[0], 6, g);
- Dijkstra(g,0);
- return 0;
- }
运行结果: