Tensor 的概念
Tensor 中文为张量。张量的意思是一个多维数组,它是标量、向量、矩阵的高维扩展。
标量可以称为 0 维张量,向量可以称为 1 维张量,矩阵可以称为 2 维张量,RGB 图像可以表示 3 维张量。你可以把张量看作多维数组。
Tensor 与 Variable
在 PyTorch 0.4.0 之前,torch.autograd 包中存在 Variable 这种数据类型,主要是用于封装 Tensor,进行自动求导。Variable 主要包含下面几种属性。
- data: 被包装的 Tensor。
- grad: data 的梯度。
- grad_fn: 创建 Tensor 所使用的 Function,是自动求导的关键,因为根据所记录的函数才能计算出导数。
- requires_grad: 指示是否需要梯度,并不是所有的张量都需要计算梯度。
- is_leaf: 指示是否叶子节点(张量),叶子节点的概念在计算图中会用到,后面详细介绍。
在 PyTorch 0.4.0 之后,Variable 并入了 Tensor。在之后版本的 Tensor 中,除了具有上面 Variable 的 5 个属性,还有另外 3 个属性。
- dtype: 张量的数据类型,如 torch.FloatTensor,torch.cuda.FloatTensor。
- shape: 张量的形状。如 (64, 3, 224, 224)。
- device: 张量所在设备 (CPU/GPU),GPU 是加速计算的关键。
关于 dtype,PyTorch 提供了 9 种数据类型,共分为 3 大类:float (16-bit, 32-bit, 64-bit)、integer (unsigned-8-bit ,8-bit, 16-bit, 32-bit, 64-bit)、Boolean。模型参数和数据用的最多的类型是 float-32-bit。label 常用的类型是 integer-64-bit。
Tensor 创建的方法
直接创建 Tensor
torch.tensor()
功能:从data创建tensor
torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False)
- data: 数据,可以是 list,numpy
- dtype: 数据类型,默认与 data 的一致
- device: 所在设备,cuda/cpu
- requires_grad: 是否需要梯度
- pin_memory: 是否存于锁页内存
代码示例:
arr = np.ones((3, 3))
print("ndarray的数据类型:", arr.dtype)
# 创建存放在 GPU 的数据
# t = torch.tensor(arr, device='cuda')
t= torch.tensor(arr)
print(t)
输出为:
ndarray的数据类型: float64
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=torch.float64)
torch.from_numpy(ndarray)
功能:从numpy创建tensor
注意事项:从 numpy 创建 tensor。利用这个方法创建的 tensor 和原来的 ndarray 共享内存,当修改其中一个数据,另外一个也会被改动。
代码示例:
arr = np.array([[1, 2, 3], [4, 5, 6]])
t = torch.from_numpy(arr)
# 修改 array,tensor 也会被修改
# print("\n修改arr")
# arr[0, 0] = 0
# print("numpy array: ", arr)
# print("tensor : ", t)
# 修改 tensor,array 也会被修改
print("\n修改tensor")
t[0, 0] = -1
print("numpy array: ", arr)
print("tensor : ", t)
输出为:
修改tensor
numpy array: [[-1 2 3]
[ 4