A Hybrid Training-Time and Run-Time Defense Against Adversarial Attacks in Modulation Classification
摘要
在深度学习在包括计算机视觉和自然语言处理在内的许多应用中的卓越性能的推动下,最近的几项研究侧重于应用深度神经网络来设计未来几代无线网络。然而,最近的几项工作指出,难以察觉且精心设计的对抗样本(攻击)会显着降低分类准确性。在这封信中,我们研究了一种基于训练时和运行时防御技术的防御机制,用于保护基于机器学习的无线电信号(调制)分类免受对抗性攻击。训练时防御包括对抗性训练和标签平滑,而运行时防御采用基于支持向量机的神经拒绝 (NR)。考虑到白盒场景和真实数据集,我们证明了我们提出的技术优于现有的最先进技术。
引言
近年来,深度学习 DL引发了人们对无线通信的浓厚兴趣。例如,各种研究人员 [1]、[2] 已经成功地将 DL 应用于自动调制分类 (AMC),这在信号情报和监控应用中至关重要,包括认知无线电和动态频谱访问,以监控频谱占用率。传统上,AMC 是通过高阶统计方法以及使用开发人员精心设计的低维特征计算紧凑决策边界来实现的。然而,AMC 也可以通过使用原始信号样本训练深度神经网络 (DNN) 来实现,从而获得高度准确的分类 [3]。基于 DL 的 AMC 的目标是识别不同类型的调制。DNN 的输入是原始射频 (RF) 信号,它由同相和正交分量(IQ 样本)组成,如 RML2016.10a [4] 所示。以此射频信号作为输入,