离散数学-第八章图论及其应用

第八章 图论及其应用

8-1 图的基本概念

8-1-1 图

定义8-1.1

一个图G定义为一个三元组<V,E, ψ \psi ψ>,记作G=<V,E, ψ \psi ψ>。其中:

V是一个非空有限集合,元素v称为图G的顶点或结点;
E是和V没有公共元素的有限集合,E可以是空集,元素e称为图G的边;
ψ \psi ψ称为关联函数,是从E到V中的有序对或无序对的映射
ψ \psi ψ(e)=(u,v)(无向边)或 ψ \psi ψ(e)=<u,v>(有向边),称e是关联顶点u和v的,端点u和v是邻接的。

有向图:每条边都是有向边。
无向图:每条边都是无向边。
混合图:一些边为有向边,一些边为无向边。
有向图的底图或基础图:将一个有向图中的每条有向边都改为无向边。
几何图形表示图:

顶点:小圆圈表示
边:有向或无向线段表示

自回路/环:关联同一个结点的一条边(或弧)
孤立结点:不关联任何边的结点。
平行边:在有向图中,两结点间(包括结点自身)有多于一条同向的边;在无向图中,两结点间(包括结点自身)有多于一条边,则这几条边称为平行边。
重边:两结点间相互平行的边的条数称为该平行边的重数。

定义8-1.2

零图:仅有孤立结点的图。
平凡图:一个图中只含一个孤立结点。

定义8-1.3

多重图:含有平行边的图。
线图:不含环的图。
简单图:既无平行边也无环。

8-1-2 结点的度

定义8-1.4

在有向图G=<V,E>中,对任意结点v ∈ \in V,以v为起点的边的条数,称为结点v的出度,记作d+(v);以v为终点的边的条数,称为v的入度,记作d-(v);结点v的出度和入度之和,称为结点的度数(或次数),记作d(v),d(v)=d+(v)+d-(v)。在无向图G=<V,E>中,结点v ∈ \in V的度数等于关联它的边数,也记作d(v)。
环结点度数加2,孤立点度数为0.
奇结点:度数为奇数的结点。
偶结点:度数为偶数的结点。

定理8-1.1、8-1.2

所有顶点度数之和为边数的两倍
有向图中,入度=出度
任何图中,奇结点的数目必为偶数个。

定义8-1.5、8-1.6

k度正则图:在无向图G=<V,E>中,每个结点的度是k。
无向完全图:在无向简单图G=<V,E>中,V中的任何结点都与其余的结点邻接。记作K|V|。若|V|=n,则该图记作Kn。Kn有C n 2 \stackrel{2}{n} n2=n(n-1)/2条边。

8-1-3 图的同构

定义8-1.7

设G1=<V1,E1>和G2=<V2,E2>同为无向图或有向图,若存在V1到V2的双射f:V1 → \rightarrow V2,使得(u,v) ∈ \in E1 ⇔ \Leftrightarrow (f(u),f(v)) ∈ \in E2(对无向图)或<u,v> ∈ \in E1 ⇔ \Leftrightarrow <f(u),f(v)> ∈ \in E2(对有向图)且对应重数相同,则称G1和G2是同构的,记作G1 ≅ \cong G2
同构:两个图结点之间具有一一对应关系,而且这种对应关系保持了结点间的邻接关系和边的重数,对有向图还要求保持边的方向
两个图同构的必要条件:

有相同的结点数目
有相同的边数
度数相同的结点数目相同
有相同重数的边数相同

8-1-4 子图和补图

定义8-1.8

给定图G1=<V1,E1>和G2=<V2,E2>,它们同为无向图或有向图。

子图:V2 ⊆ \subseteq V1和E2 ⊆ \subseteq E1,且E2中边的重数不大于E1中同边的重数,称G2为G1的子图,记作G2 ⊆ \subseteq G1
真子图:V2 ⊂ \subset V1和E2 ⊂ \subset E1,或E2中某边的重数小于E1中同边的重数,那么称子图G2为G1的子图,记作G2 ⊂ \subset G1
生成子图:V2=V1和E2 ⊆ \subseteq E1,那么称G2为G1的生成子图,记作G2 ⊆ \subseteq G1(V1=V2)。
导出子图:V2 ⊆ \subseteq V1,V1 ≠ \neq = ∅ \emptyset ,E2是以V2中结点为端点的E1中的边组成的,那么称G2为G1的由V2导出的导出子图,记作G1[V2]。
导出子图:E2 ⊆ \subseteq E1,V2是E2的结点集,那么称G2为G1的由E2导出的导出子图,记作G1[E2]。

定义8-1.9

设G=<V,E>是n阶简单无向图,若存在图G1=<V,E1>也有同样的结点,并且E1 ⋂ \bigcap E= ∅ \emptyset 和E1是由n阶完全图的边删去E所得,则称G1相对完全图的G的补图,简称G1是G的补图,并记作G1= G ‾ \overline{G} G
自补图:G ≅ \cong G ‾ \overline{G} G.

8-2 图的连通性

8-2-1 路径与回路

定义8-2.1

设G=<V,E>是无向图。
1.

路径:称一个顶点与边的交替序列u=v0e1v1e2…elvl是G中一条从起点v0到终点vl的路径,简称路。
v0和vl分别称为路的起点和终点,边的数目称为路的长度,记作|u|。
开路回路:当v0=vl时,称u为回路(或闭路、圈),否则称u为开路。
子路:u的子序列为路,则称为u的子路。

简单路(或链、迹):路的边互不相同。
基本路(或基本链):出现的结点都是不相同的。
特别的,任何结点到自身都有长度为0的基本路。
显然,每条基本路必定是简单路。

简单回路(或简单圈):在一个回路中,出现的边互不相同。
基本回路(或基本圈):在一个回路中,每个结点恰好出现一次。

定理8-2.1

设G=<V,E>是n阶无向图,则
1.任何基本路的长度均不大于n-1;
2.任何基本回路的长度均不大于n。

8-2-2 连通图

定义8-2.2

设G是无向图,若结点u与结点v之间存在任何一条通路,则称结点u与结点v是连通的。若G中任意不同的两个结点之间都是连通的,则称G是连通图,否则称G是分离图或非连通图。

定理8-2.2

无向图G中,结点间的连通关系是结点集上的等价关系。
图G是连通图当且仅当图G连通分支的个数 ω \omega ω(G)=1。

定义8-2.3

设u、v是无向图G中的任意两个结点,若u和v是连通的,则u和v之间的长度最短的一条通路称为u与v之间的短程线。短程线的长度称为u和v之间的距离,记作d(u,v)。若u与v不连通,则d(u,v)= ∞ \infty

定义8-2.4

设G=<V,E>为连通无向图,S ⊂ \subset V。
1.若导出子图G-S不连通,但 ∀ \forall T ⊂ \subset S时,导出子图G-T都连通,则称S是G的一个点割集。
2.若点割集S={v},则称v是G的割点。

定义8-2.5

设G=<V,E>为连通无向图,S ⊂ \subset E。
1.若导出子图G-S不连通,但 ∀ \forall T ⊂ \subset S时,导出子图G-T都连通,则称S是G的一个边割集。
2.若边割集S={e},则称v是G的割边或桥。

定义8-2.6

设G是有向图,若结点u到结点v之间存在任何一条有向路,则称结点u到结点v是可达的。可达性是有向图结点集上的二元关系,具有自反性、传递性,一般不是对称的。

定理8-2.3

在有向图G中,结点间的双向可达关系是结点集上的等价关系。

定义8-2.7

在有向图G中,若G中任何两个结点间都是相互可达的,则称G是连通的;若任何两个结点间,从某一个结点可达另一个结点,则称G是单向连通的;若有向图G不是单向连通的,但其基础图是连通的,则称G是弱连通的;若有向图G的基础图不连通,才称G是分离的或非连通的

定义8-2.8

设G1是有向图G的子图。若G1是强连通的(单向连通的,弱连通的),但在G1中任意增加原图的一些边或一些结点,所得子图便不再是强连通的(单向连通的,弱连通的),则称G1是有向图G的一个强分图(单向分图,弱分图)。

定理8-2.4

有向图G中
1.任意结点恰位与一个强分图中。
2.任意结点恰位与一个弱分图中。
3.任意结点至少位与一个单向分图中。

8-3 图的矩阵表示

8-3-1 图的邻接矩阵

定义8-3.1

给定图G=<V,E>,V={v1,v2,…vn},V中结点按下标由小到大排序,则n阶方阵A(G)=(aij)nxn称为图G的邻接矩阵。其中:

1.若G为有向图,则aij=k ⇔ \Leftrightarrow <vi,vj>在E中出现k次,i、j=1,2,…n;
2.若G为无向图,则aij=k ⇔ \Leftrightarrow (vi,vj)在E中出现k次,i、j=1,2,…n。

邻接矩阵的性质:

若邻接矩阵的元素全为0,则其对应的图是零图;
若邻接矩阵的元素除主对角线元素为0以外全为1,则其对应的图是连通的且为简单完全图。
若给定的图是简单图,其邻接矩阵是布尔矩阵。
若给定的图是无向图,其邻接矩阵是对称矩阵。
若给定的图是无自回路图,其邻接矩阵的主对角线元素全为0。

定理8-3.1

设Al=(a i j l \stackrel{l}{ij} ijl)nxn表示图G的邻接矩阵的l次幂,则其中的i行j列元素a i j l \stackrel{l}{ij} ijl表示G中由vi到vj的长度为l的路的数目。

8-3-2 图的可达矩阵

定义8-3.2

给定图G=<V,E>,将其结点按下标排序得V={v1,v2,…vn}。定义P(G)=(pij)nxn为图G得可达矩阵。其中
p i j = { 1 , v i 到 v j 可 达 0 , v i 到 v j 不 可 达 pij = \begin{cases} 1,vi到vj可达 \\ 0,vi到vj不可达 \end{cases} pij={1,vivj0,vivj
可达矩阵的求解:
1.令Bn=A+A2+A3+…+An,再将Bn中的非零元素改为1而0不变。
2.令A(G)=(aij)nxn为图G的邻接矩阵,定义A(1)(G)=(eij)nxn,其中
e i j = { 1 , a i j ≠ 0 0 , a i j = 0 eij = \begin{cases} 1,aij\neq0 \\ 0,aij=0 \end{cases} eij={1,aij=00,aij=0
再定义A(2)(G)=(e(2)ij)nxn,其中e(2)ij= ⋁ \bigvee nr=1(eir ⋀ \bigwedge erj)
符号 ⋁ \bigvee ⋀ \bigwedge 表示取大运算和取小运算,运算规则与命题真值的析取、合取运算完全相同
P(G)=Iv ⋁ \bigvee A ⋁ \bigvee A(2) ⋁ \bigvee A(3) ⋁ \bigvee A(n)
PT=(pij)是P的转置矩阵,通过矩阵P ⋀ \bigwedge PT求出图G的强分图。

8-4 特殊图

8-4-1 欧拉图

定义8-4.1

设G=<V,E>是连通图(无向的或有向的)。G中经过每条边一次且仅一次的通路(回路)称为欧拉通路(回路);具有欧拉回路的图称为欧拉图。

定理8-4.1

连通的非平凡的无向图G具有欧拉通路,当且仅当G具有0个或2个奇数度数的顶点。

推论8-4.1

连通的非平凡的无向图G具有欧拉回路,当且仅当G无奇数度数的顶点。

定理8-4.2

连通的非平凡的无向图G具有欧拉通路,当且仅当G中除两个例外顶点外每个顶点的入度都等于出度。对于这两个例外顶点,它们可能全部入度等于出度;可能一个顶点的入度比出度大1,另一个顶点的入度比出度小1.

推论8-4.2

连通的非平凡的无向图G具有欧拉回路,当且仅当G中所有顶点的入度等于出度。

8-4-2 哈密顿图

定义8-4.2

设G=<V,E>是连通图(无向的或有向的)。G中经过每个顶点一次且仅一次的通路(回路)称为哈密顿通路(回路);具有哈密顿回路的图称为哈密顿图。

定理8-4.3

设无向图G=<V,E>为哈密顿图,V1是V的任意真子集,则p(G-V1) ≤ \leq |V1|,其中,p(G-V1)为从G中删除V1后所得图的连通分支数。

推论8-4.3

有割点的图一定不是哈密顿图。


充分条件

定理8-4.4

设G是n(n ≥ \geq 3)阶无向简单图,若对G中每一对不邻接的顶点u、v,均有d(u)+d(v) ≥ \geq n-1,则G中存在哈密顿通路。又若d(u)+d(v) ≥ \geq n,则G中存在哈密顿回路,即G为哈密顿图。

推论8-4.4

设G是n(n ≥ \geq 3)阶无向简单图,G中顶点的最小度数大于等于n/2,则G是哈密顿图。


定义8-4.3

G有n个顶点,在G中,逐一连接其度数之和至少是n的非邻接顶点对,直到不再有这样的顶点对时为止,这样得到的图称为G的闭包,记作C(G)。

定理8-4.5

无向图G时哈密顿图,当且仅当G的闭包C(G)是哈密顿图。

推论8-4.5

设G是n(n ≥ \geq 3)阶无向简单图,若C(G)是完全图,则G是哈密顿图。

8-4-3 二部图

定义8-4.4

若能将无向图G=<V,E>的顶点集V分成两个不相交的子集V1和V2(即V1 ∩ \cap V2= ∅ \emptyset 且V1 ∪ \cup V2=V),使得G中任何一条边的两个端点一个属于V1,另一个属于V2,则称G为二部图,记作G=<V1,V2,E>。其中V1、V2称为互补顶点集。

定义8-4.5

若G是二部图,V1中任意顶点与V2中任意顶点均有且仅有一条边相关联,则称二部图G为完全二部图。若|V1|=r,|V2|=s,则记完全二部图Kr,s
在完全二部图Kr,s中,它的顶点数n=r+s,边数m=rs。

定理8-4.6

无向图G是二部图当且仅当G中无奇数长度的回路。

定义8-4.6

设二部图G=<V1,V2,E>,E ⊆ \subseteq E。
1.若E中的边互不邻接,则称E是G的匹配。
2.设|V1| ≤ \leq |V2|,E是G的匹配,若|E|=|V1|,则称E是V1到V2的完备匹配。

定理8-4.7

设二部图G=<V1,V2,E>,其中|V1| ≤ \leq |V2|,则G中存在V1到V2的完备匹配当且仅当V1中任意k(k=1,2,…,|V1|)个顶点至少与V2中的k个顶点邻接。这个条件称为“相异性条件”,是二部图存在完备匹配的充要条件。

定理8-4.8

设二部图G=<V1,V2,E>,其中|V1| ≤ \leq |V2|,若存在正整数t,使得V1中每个顶点至少关联t条边,且V2中每个顶点至多关联t条边,则G中存在V1到V2的完备匹配。这个条件称为“t条件”,是二部图存在完备匹配的充分条件。

8-4-4 平面图

定义8-4.7

图G那能以这样的方式画在平面上:除顶点处处没有边交叉出现。则称G为平面图。画出的没有边交叉出现的图称为G的平面嵌入或平面表示。无平面嵌入的图称为非平面图。

定义8-4.8

设G是一个平面图,G的边将所在的平面划分为若干区域,每个区域称为G的一个面。其中面积无限的区域称为无限面或外部面,面积有限的区域称为有限面或内部面。边界的长度为面的次数,记作deg®。

定义8-4.9

设G是一个简单平面图,如果在G的任意不邻接的顶点之间再加一条边,所得图为非平面图,那么称G为极大平面图。
极大平面图的性质:

极大平面图是连通的。
n(n ≥ \geq 3)阶平面图是极大平面图的充要条件它的每个面都由3条边围成。

定理8-4.9

(欧拉公式)设G为任意连通的平面图,则n-m+r=2。
n:顶点数 m:边数 r:面数

推论8-4.6

若G是n(n ≥ \geq 3)阶m条边的简单连通平面图,则m$\leq$3n-6。

判断平面图的充要条件

定义8-4.10

若两图G1、G2同构,或经过反复插入或删除度数为2的顶点后同构,则称G1和G2同胚。

定义8-4.11

图G的一个初等收缩由如下方法得到:删除G中两个邻接的顶点vi、vj即边(vi,vj),用一个新的符号 ω \omega ω替代,使它邻接所有邻接与vi、vj的顶点。一个图G可以收缩到图H,即指H可以从G经过一系列初等收缩得到。

定理8-4-10

一个图是平面图当且仅当它不含与K5或K3,3同胚的子图。

定理8-4-10

一个图是平面图当且仅当它没有可以收缩到K5或K3,3的子图。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估中心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值