离散数学图论旅行规划问题_离散数学第七章图论研究.ppt

本文介绍了离散数学中图论的概念,特别是如何利用广度优先搜索法和算法解决旅行规划问题,并探讨了最小生成树在城市通讯网中的意义。通过Kruskal和Prim算法求解最小生成树,确保通讯费用最小。此外,还讨论了根树、有序树和2叉树的相关定义及其在数据结构中的应用。
摘要由CSDN通过智能技术生成

* * 广度优先搜索法 v1 v3 v4 v6 v2 v5 任取一点,设为 v1,令V’={v1}, 在V-V’中依次访问与v1相邻的所有结点v2,v5,v6,令V’={v1,v2, v5,v6}; 在V-V’中依次访问与v2, v5,v6 相邻的所有结点v3, v4 … 直到V-V’=Φ。 访问走过的路径就是一棵生成树。 离散数学 第十六章 树 * * 定义7.3 设G是一个无向连通带权(正权)图G=,T是G的一棵生成树,称为带权生成树,T的各边权之和称为T的权,记为W(T)。 在带权图G的所有生成树中,权最小的生成树称为图G的最小生成树。 4 28 20 9 25 16 7 5 30 32 15 12 W(T1)= W(T2)= W(T3)= 离散数学 第十六章 树 * * 求最小生成树T的方法之一:(kruskal算法) 设G=(n,m)的边按权从小到大排序为:e1,e2,e3,e4,…em 取e1 ,e2在T中,即T={e1 ,e2}, 从e3起按次序逐个检查,若ei与T中的边不构成回路,则将ei放入T中,否则舍去;…直到T中含有n-1条边,T即为G的最小生成树。 4 28 20 9 25 16 7 5 30 32 15 12 离散数学 第十六章 树 W(T)=69 * * 4 20 9 16 7 5 30 32 15 12 28 求最小生成树T的方法之二: 设G=,任取v∈V放入T中,在E(G)-E(T)中取一与v 相邻的权最小的边(v,u)放入T中(不能构成回路),…直到T包含所有顶点即得G的最小生成树。 25 离散数学 第十六章 树 W(T)=69 城市通讯网图中,最小生成树就是能保证通讯费用最小的通讯网。 * * 八、 根树及其应用 根树 叶 内点 树根 离散数学 第十六章 树 定义8.1 如果一个有向图在不考虑边的方向时是一棵树,则这个图称为有向树。 定义8.2 设T是有向树,若T中恰有一个结点的入度为0,其余结点的入度均为1,则称T为根树。入度为0的结点称为树根,入度为1出度为0的点称为叶,入度为1出度不为0的点称为分枝点或内点。 * * 在根树中,由于各边的方向是一致的,所以画树根时可以省去各边上的所有箭头。并将树根画在最上方。 定义8.3 根树包含一个或多个结点,? * * 结点v的层数 有序树 左孩子 右孩子 左子树 右子树 离散数学 第十六章 树 v 定义8.4 在根树中,若每个结点的出度小于或等于m,则称这棵树为m叉树。如果每个结点的出度恰好等于m或0,则称这棵树为完全m叉树;若其所有树叶层次相同,称为正则m叉树。 树根层数为0 树的高度 祖先 父亲 儿子 兄弟 * * 一棵树可以化为相应的2叉树。 其方法为: 每个结点的第一个儿子作为该结点的左子树,兄弟作为该结点的右子树。 a b c d e f g a b c d e f g 离散数学 第十六章 树 * * 下面两个2叉树一样吗? 左子树和右子树 是不等同的 离散数学 第十六章 树 * * 带权2叉树 设2叉树T有t片树叶v1,v2,…vt,若各树叶分别带权为w1,w2,…wt,则此2叉树称为带权2叉树; 称W(T)=∑wil(vi)为T的权; (其中l(vi)为结点vi的层数) W(T)=(2+3)×3 + 5×2 + 7 × 1 =32 离散数学 第十六章 树 * * 所有带权为w1,w2,…wt的2叉树中,W(T)最小的2叉树称为最优2叉树。 W(T)=(2+3 +7 +5 ) ×2 =34 离散数学 第十六章 树 怎样求最优2叉树呢? 7 5 2 3 * * Huffman算法 给定实数w1,w2,…wt, 且w1 ≤w2 ≤ … ≤ wt, ①连接权为w1,w2的两片树叶,得到一个分枝点,其权为w1+w2; ②在w1+w2, w3,…wt,中选出两个最小的权,连接它们对应的顶点(不一定是树叶),得新分枝点及所带的权; ③重复②,直到形成t-1个分枝点,t片树叶为止。 离散数学 第十六章 树 * * 例、 求带权2,2,3,3,5的最优2叉树。 2 2 4 3 3 6 5 9 15 W(T)=(2+2)X3+(5+3+3)X2=34 离散数学 第十六章 树 * * 最优2叉树的应用——二元前缀码 设需要传送的电文为‘ABACCDA’,只有四种字符,只需0和1两个字符的串便可分辨。 设A、B、C、D的编

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值