dp就是先把大的问题划分成小问题,然后分别解决,不管有用没用,先引入一个数组,把算过的东西保存起来,有的时候从后往前,有的时候从前往后调用数组里的东西,大概就是这样!
最长公共子序列需要一个二维的表,dp[i][j],存的是A[i]和B[j]的最长公共子序列,扫描两个序列中同一位置的两个字符,如果一样,就是长度为i,j的公共子串+1,如果不一样,则需要比较,看看是“舍弃”哪一个字符比较合适,然后把数据存下来,调用。
自己打一张表会理解得深刻一些。
AC代码☟
#include<iostream>
using namespace std;
#include<string.h>
#include<algorithm>
#include<string>
int dp[1005][1005];
int main()
{
string a,b;
while(cin>>a>>b)
{
int len1=a.size();
int len2=b.size();
memset(dp,0,sizeof(dp));
//置零
int i,j;
for(i=1;i<=len1;i++)
for(j=1;j<=len2;j++)
{
if(a[i-1]==b[j-1])
//因为这个表代表的是长度为i和j的A、B串的最长公共子序列,而字符串的长度和位置是差1的。
dp[i][j]=dp[i-1][j-1]+1;
else
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
/*for(i=0;i<=len1;i++)
{
for(j=0;j<=len2;j++)
printf("%d ",dp[i][j]);
printf("\n");
}*/
printf("%d\n",dp[len1][len2]);
}
return 0;
}
感觉最长公共子序列这个表确实很精彩!