Fibonacci again and again
Problem Description
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。
Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
Sample Input
1 1 1
1 4 1
0 0 0
Sample Output
Fibo
Nacci
题意:博弈论问题。按照题目所述方式取石子,最先取完的人取胜。这是一个能够很方便使用SG函数的例子。 先打表获取sg值, 然后异或判断结果。
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 1005
int sg[MAX], f[MAX];
void GetSG(int n)
{
int i, j, tmp[MAX];
memset(sg, 0, sizeof(sg));
for(i = 1; i <= n; i++)
{
memset(tmp, 0, sizeof(tmp));
for(j = 1; f[j] <= i; j++)
tmp[sg[i-f[j]]] = 1;
for(j = 0; j <= n; j++)
{
if(tmp[j] == 0)
{
sg[i] = j;
break;
}
}
}
}
int main()
{
int i;
f[0] = 0;
f[1] = 1;
f[2] = 2;
for(i = 3; f[i-1] < MAX; i++)
f[i] = f[i-1] + f[i-2];
GetSG(MAX);
int m, n, p;
while(cin >> m >> n >> p)
{
if(m==0 && n==0 && p==0)
break;
if((sg[m]^sg[n]^sg[p]) == 0)
cout << "Nacci" << endl;
else
cout << "Fibo" << endl;
}
return 0;
}
注意一点:sg值异或计算时 要用括号括起来。