什么是逆波兰表达式(后缀表达式):
逆波兰算法(Reverse Polish Notation, RPN),也被称作后缀表达式,是一种没有括号,且任何运算符均放置于对应的操作数之后的算术表达式。这种表示方法避免了运算符优先级带来的歧义,使得算术表达式的解析更为简单。
后缀表达式(逆波兰表达式)的组成:
**操作数:**表达式中的数字和变量。
**运算符:**加、减、乘、除等算术运算符,以及比较运算符等。
后缀表达式的特点:
- 没有优先级,运算符按照出现的顺序执行。
- 任何运算符均出现在其相关操作数之后。
- 可以使用栈(stack)数据结构方便地进行计算。
将中缀表达式(如常见的数学表达式) 转换为逆波兰表达式)的过程通常涉及以下步骤:
1、 创建两个栈:一个用于操作数 (称为操作数栈或数组),另一个用于运算符 (称为运算符栈)。
2、从左到右扫描中缀表达式。
3、如果遇到操作数,将其转换为逆波兰表达式,并在操作数栈中添加该操作数。
4、如果遇到运算符:
1)如果运算符栈为空或栈顶运算符为左括号(,或当前运算符优先级高于栈顶运算符,则将当前运算符压入运算符栈。
2) 否则,当栈顶运算符优先级大于或等于当前运算符优先级时,将栈顶运算符弹出并添加到操作数栈中,然后继续比较栈顶新的运算符与当前运算符的优先级。
5、如果遇到左括号 (,将其压入运算符栈。 如果遇到右括号 ),则将栈顶的运算符弹出并添加到操作数栈中,直到遇到左括号(。弹出左括号,但不用它表示任何运算。
6、表达式扫描完毕后,将操作数栈中的元素依次弹出并添加到运算符栈中,再运算符元素依次弹出组成字符串即为逆波兰表达式。
转换成逆波兰表达式详细步骤举例:
将 “3+4-(5*8)/7” 转换成逆波兰表达式为:”3 4 + 4 5 7 / + -“,步骤如下
simple:3+4-(5*8)/7
res: 3 4 + 4 5 7 / + -
step1: 从simple从左向右扫描,遇到操作数压入数字栈numStack中,遇到操作符压入符号栈operStack
numStack:3 4
operStack:+
step2: 遇到-操作符与+优先级一致,将+从符号栈弹出放入数字栈,再将-放入符号栈
numStack:3 4 +
operStack:-
step3: numStack:3 4 + 4
operStack:- (
step4: 遇到+操作符比符号栈(优先小,将(从符号栈弹出放入数字栈,再将+放入符号栈
numStack:3 4 + 4 (
operStack:- +
step5:
numStack:3 4 + 4 ( 5
operStack:- + )
step6:
numStack:3 4 + 4 ( 5 ) 7
operStack:- + /
step7:
numStack->operStack:- + / 7 ) 5 ( 4 + 4 3
step8:
operStack依次pop(省略“(”,“)”)最终结果为:3 4 + 4 5 7 / + -
逆波兰表达式计算
假设有一个逆波兰表达式 3 4 + 2 *。
1、初始化一个空栈。
2、从左至右扫描表达式:
遇到数字 3,将其入栈。
遇到数字 4,将其也入栈。
遇到 + 运算符,由于栈顶是 3 和 4(操作数),满足执行条件,所以弹出栈顶的两个操作数(3 和 4),执行 3 + 4,将结果 7 入栈。
遇到数字 2,入栈。
遇到 * 运算符,栈顶是 7 和 2(操作数),满足执行条件,弹出栈顶的两个操作数(7 和 2),执行 7 * 2,将结果 14 入栈。
3、表达式扫描完毕,栈中只有一个元素 14,这就是表达式的计算结果。
具体代码实现如下:
package com.data;
import