RuntimeError: Missing dependencies:XXX

 pip install transformers

然后把报错的包也安装一下

  pip install XXX
引用中提到的错误"RuntimeError: CUDA error: misaligned address"是由于CUDA内核错误引起的。该错误可能会在其他API调用时异步报告,导致下面的堆栈跟踪可能是不正确的。为了调试,可以考虑在CUDA_LAUNCH_BLOCKING=1的情况下运行程序。 引用中提到的解决方法是通过设置CUDA_LAUNCH_BLOCKING=1来进行调试,以便在错误发生时阻塞程序并获得准确的堆栈跟踪。这样可以更容易地定位错误并解决问题。 引用中提到的错误"RuntimeError: CUDA out of memory"是由于GPU显存不足引起的。为了解决这个问题,可以尝试以下方法: 1. 将batch_size改小,以减小每次运算所需的显存占用量。 2. 当需要取torch变量的标量值时,使用item()属性而不是保留整个变量。 3. 在测试阶段,可以尝试添加代码以释放不必要的显存资源。 引用中提到的警告"UserWarning: NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation"表示当前的PyTorch版本不支持您的显卡。如果想要使用NVIDIA GeForce RTX 3090 GPU进行PyTorch开发,请参考提供的链接,按照指引进行安装和配置。 综上所述,"RuntimeError: CUDA error: misaligned address"是由CUDA内核错误引起的,可以使用CUDA_LAUNCH_BLOCKING=1进行调试。而"RuntimeError: CUDA out of memory"则是由于GPU显存不足引起的,可以通过减小batch_size、使用item()属性和释放不必要的显存资源来解决问题。同时,如果要使用NVIDIA GeForce RTX 3090 GPU进行PyTorch开发,请确保PyTorch版本与显卡兼容。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [CUDA Error: no kernel image is available for execution on device](https://blog.csdn.net/qq_34845880/article/details/126460123)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [pytorch模型提示超出内存RuntimeError: CUDA out of memory.](https://download.csdn.net/download/weixin_38552305/14884908)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值