codevs 1217 借教室
题目
给你1到n,n个正数,m次询问,
每次询问给三个参数,dj, sj, tj,代表从sj到tj区间里,每个数都减去dj,
询问成功条件是区间的数减完 dj 后不能小于0,
如果m次询问都成功输出0
如果k次询问不成功输出-1,并输出k。
1 < n, m < 1e6
分析
首先题目很简单,但是数据量比较大,直接暴力模拟肯定T,
看到区间查询,修改很自然想到线段树,不过还有没别的方法?
差分数组
我们反过来看,对于每次询问,sj 到 tj 我们加上dj,但不是从sj 到 tj 每个元素都加,只需要sj 位置 += dj ,tj+1 位置 -= dj,最后求前缀和即可得出第 i 天的数字。
举个例子,假设有4天, 2 次操作,(i , j, k)代表从i 到 j加上k
(1, 3, 2)
(2, 3, 3)
初始4天:0 0 0 0
①: 2 0 0 -2
②: 2 3 0 -5
这样求前缀和 即可得出第 i 天一共加上的数。
而本题要求输出第一个不成功的查询,而只要有一个不成功查询,后面的都不会成功,也就是我们可以二分答案。
最后复杂度O(nlogn)
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define d(x) cout << (x) << endl
#pragma GCC diagnostic error "-std=c++11"
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
const int N = 1e6 + 10;
struct node{
int l, r, v;
} a[N];
int n, m;
int arr[N];
int itv[N]; //差分数组 一般和前缀和一起使用
int check(int x) //判断 x 次询问之前的是否都成功
{
memset(itv, 0, sizeof(itv));
for (int i = 1; i <= x; i++){
itv[a[i].l] += a[i].v;
itv[a[i].r + 1] -= a[i].v;
}
int now = 0; //第 i 天所需要的教室
for (int i = 1; i <= n; i++){
now += itv[i];
if(now > arr[i]) //第 i 天所需要的教室大于所准备的
return 0; //不行
}
return 1; //都满足返回 1
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++){
scanf("%d", &arr[i]);
}
for (int i = 1; i <= m; i++){
scanf("%d%d%d", &a[i].v, &a[i].l, &a[i].r);
}
int l = 1, r = m, ans = 0;
while(l <= r){
int mid = l + r >> 1;
if(check(mid)){
l = mid + 1;
ans = mid; //ans 代表最后一次成功的询问
}else{
r = mid - 1;
}
}
if(check(m)) //如果前 m 次都成功代表所有都成功
printf("0\n");
else
printf("-1\n%d\n", ans + 1); //输出第一次不成功的询问
return 0;
}