PySide6 Tutorials (三)鼠标移动控件及其位置更新 网上搜了一圈都是收费文章,什么时候开源精神都已经被xxxx用来中间商赚差价了嘛!别人收费我免费,一起进步才不累!本文为作者原创,转载需注明出处!在graphicview中拖拽控件。出发,与鼠标不处于同一位置。
Linux下pip离线安装库及其依赖库 前言在某些设备上安装Python环境后,由于设备的苞米性质,无法进行联网安装需要的第三方库。此外,由于第三方库依赖包众多,使得离线包安装过程中一直失败。本文旨在解决断网/局域网情况下,第三方包以及依赖包安装的问题。一、三句指令就是核心# 以 jupyterlab 为例mkdir jupyterlabpip download -d /jupyterlab jupyterlab -i https://pypi.douban.com/simplepip install --no-index --fi
Python装库问题合集 前言在我们使用 pip install xxx 时,总会遇到形形色色、奇奇怪怪的问题。有的问题加个参数搞定,而有的问题必须得大动干戈。本文主要用于记录那种一两句话就可以搞定的装库问题。问题一:ERROR: Cython.Build.cythonize not found. Cython is required to build pyproj.原因:pip版本太低解决方案pip install --upgrade pip本文为作者原创,转载需注明出处!...
Jupyter Lab3.0远程访问配置及代码无法自动补全问题 1. 前言阴沟里翻船,也算做了几年深度学习,居然配置深度学习利器Jupyter Lab出了一堆问题,总结以及解决方案如下:2. 远程访问配置生成默认配置文件,会保存在~/.jupyter/jupyter_notebook_config.py中jupyter notebook --generate-config --allow-root敲下面指令自动生成密钥,密码自己想,输两次jupyter notebook password在~/.jupyter/jupyter_notebook
深入BBN,如何解决长尾数据分布的同时兼顾表示学习 1. 问题引入本次要记录的论文是,CVPR2020 的 " BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition "。该文旨在解决长尾数据分布的同时兼顾表示学习。长尾数据是视觉认知任务如:图像分类、目标检测中影响实验结果的主要问题之一。长尾数据分布的意思是:数据集中某几个类别占据了大部分的数据,而剩余的类别各自的数据很少。举个例子,想用一个1000张图像的数据集训练一个分类模
Reinforcement Learning 2 1. 两种Policy强化学习有两种训练方法:On-policy,要学的Agent边学边玩Off-policy,要学的Agent看别人玩前文讲解的Policy Gradient其实是On-policy的做法,这理解起来很直观:∇Rˉθ=Eτ∼Pθ(τ)[R(τ)∇log(Pθ(τ))]abla\bar{R}_\theta = E_{\tau\thicksim P_\theta(\tau)}[R(\tau)abla log(P_\theta(\tau))]∇Rˉθ=Eτ∼Pθ(τ)
Reinforcement Learning 1 1. RL几个应用Learning to play AlphaGoSupervised(监督学习的方式)从老师那里学习,即通过打标签的方式学习比如看棋谱学,但棋谱是人下的,人下的那一步就是最优的吗?Reinforement Learning从经验中学习,其实人可能都不知道哪一步是最优的AlphaGo的学习方式先做Supervised Learning,从高手棋谱中学习通过Supervised Learning训练出两个模型,他们互相博弈Learning a C
Statistic Learning 6 Linear Model Selection and Regularization在回归方法中,标准的线性模型如下:Y=β0+β1x1+...+βpxp+ϵY = \beta_0 + \beta_1x_1 + ... + \beta_px_p + \epsilonY=β0+β1x1+...+βpxp+ϵ用来描述Response Y和一系列变量x1,x2,...,xpx_1, x_2, ... ,x_px1,x2,...,xp之间的关系。在前文中,我们使用最小二乘来拟合模型,的确线性模型
小论文撰写中常用单词的N种说法 本文是作者在撰写小论文过程中,从定会论文中摘选出来的常用单词不同的说法,从而避免论文的文笔过于单调。本文将会不定期更新~欢迎小伙伴们在留言区补充哦!1. 常用词的N种说法1.1 BesidesMoreoverIn addition1.2 Getobtain1.3 Showexhibitdemonstratepresent1.4 Improvebe booste...
强势源码理解RPN区域推荐网络 1. Anchor Generation Layer对于生成anchors的源码理解主要来源于两个代码RBG大神的caffe源码:https://github.com/rbgirshick/py-faster-rcnnGithub上复现的pytorch源码:https://github.com/chenyuntc/simple-faster-rcnn-pytorch由于两种方法生成an...
强势理解Faster-RCNN的几个难解之谜 1. 几个问题Anchor和全卷积输出值之间的关系“回归系数”是什么,有什么用?在选择RPN Boxes时,既要考虑RPN Boxes与Ground Truth的IOU来筛选,又要考虑每个RPN boxes为物体前景的概率。那么在筛选RPN Boxes的时候,哪个先考虑,哪个后考虑,还是说同时考虑?如果说是同时考虑,又怎么考虑?2. Anchor Generation Layer...
Statistic Learning 5 1. Cross-Validation on Classification ProblemsCross-Validation用于分类任务概念在系列前文中,描述的都是Cross−ValidationCross-ValidationCross−Validation在回归任务中的应用,并使用MSEMSEMSE量化Test Error,但Cross−ValidationCross-Validati...
Statistic Learning 4 1. Resampling Methods重采样方法是现代统计学习中不可缺失的一环。它们包括:重复的从训练集中采样重复的拟合模型以获得额外的信息重采样方法会耗费计算机资源,因为需要从训练集中采集不同的子集来多次拟合同一个模型。下面,我们将要讨论两个较为常用的重采样方法:Cross−ValidationCross-ValidationCross−Validation(交叉验证)Bo...
Statistic Learning 3 1. LDA for p > 1假设X=(x1,x2,...,xp)X=(x_1, x_2, ..., x_p)X=(x1,x2,...,xp)来自多元高斯分布,关于K类有着不同的均值,但协方差矩阵相同。多元高斯分布的一些直观概念假设每个predictorpredictorpredictor符合一维高斯分布,每对predictorpredictorpredictor中存在相...
Statistic Learning 2 Logistic Regression三种常用的分类方法Logistic RegressionLinear Discriminant AnalysisK-NN Negihbor为什么不用Linear Regression建模分类模型?若使用Linear Regression来建模P(x)=β0+β1xP(x) = \beta_0 + \beta_1xP(x)=β0+...
Statistic Learning 1 1. RSS, RSE, TSS等RSS(Residual Sum of Squares)RSS=e12+e22+e32+...+en2=(y1^−β0^−β1^x1)+...+(yn^−β0^−β1^xn)=∑i=1n(yi−yi^)2RSS = e_1^2 + e_2^2 + e_3^2 + ... + e_n^2 \\ =(\hat{y_1} - \hat{\beta_0} - \...
那些堪比照片质感的PhotoRealistic Style Transfer系列 1. Prerequisite Knowledge此部分为预备知识,主要涉及内容如下:Upsampling, Uppooling, Transpose Convolution(上采样,上池化,转置卷积)Whitening and Coloring Transformations(白化与上色)Wavelet Transforms(小波变换)若是熟悉这几块内容的童鞋可以直接跳...