具体数学-第4课(多重求和方法)

原文链接:

具体数学-第4课 - WeiYang Blog

今天讲了多重求和,也就是一个和式由多个下标来指定。

首先是最简单的形式:
\sum\limits_{1 \le j,k \le n} { {a_j}{b_k}} = (\sum\limits_{1 \le j \le n} { {a_j}} )(\sum\limits_{1 \le k \le n} { {a_k}} )

例题1

下面给出一个对称矩阵:
A(i,j) = {a_i}{a_j}
求:
S = \sum\limits_{1 \le j \le k \le n} { {a_j}{a_k}}
这是这个矩阵的上三角加对角线求和,因为是对称的嘛,可以补全下三角,加上对角线就行了。
2S = \sum\limits_{1 \le j,k \le n} { {a_j}{a_k}} + \sum\limits_{1 \le j = k \le n} { {a_j}{a_k}} = {(\sum\limits_{1 \le k \le n} { {a_k}} )^2} + \sum\limits_{1 \le k \le n}^{} { {a_k}^2}
所以
S = \frac{1}{2}({(\sum\limits_{1 \le k \le n} { {a_k}} )^2} + \sum\limits_{1 \le k \le n}^{} { {a_k}^2} )

例题2

下面再看一个例子:
S = \sum\limits_{1 \le j < k \le n} {({a_j} - {a_k})({b_j} - {b_k})}
同样模仿上例调换 j,k 位置,得到:
\begin{array}{l}2S = \sum\limits_{1 \le j,k \le n} {({a_j} - {a_k})({b_j} - {b_k})} - \sum\limits_{1 \le j = k \le n} {({a_j} - {a_k})({b_j} - {b_k})} \\ = \sum\limits_{1 \le j,k \le n} {({a_j}{b_j} - {a_j}{b_k} - {a_k}{b_j} + {a_k}{b_k})} \\ = 2\sum\limits_{1 \le j,k \le n} { {a_j}{b_j}} - 2\sum\limits_{1 \le j,k \le n} { {a_j}{b_k}} \\ = 2n\sum\limits_{1 \le j \le n} { {a_j}{b_j}} - 2(\sum\limits_{1 \le j \le n} { {a_j}} )(\sum\limits_{1 \le k \le n} { {b_k}} )\end{array}
所以
S = n\sum\limits_{1 \le j \le n} { {a_j}{b_j}} - (\sum\limits_{1 \le j \le n} { {a_j}} )(\sum\limits_{1 \le k \le n} { {b_k}} )
至此解完,然后可以推出一个著名的不等式————切比雪夫不等式:
(\sum\limits_{1 \le j \le n} { {a_j}} )(\sum\limits_{1 \le k \le n} { {b_k}} ) = n\sum\limits_{1 \le j \le n} { {a_j}{b_j}} - \sum\limits_{1 \le j < k \le n} {({a_j} - {a_k})({b_j} - {b_k})}
如果
{a_1} \le {a_2} \le \cdots \le {a_n},{b_1} \le {b_2} \le \cdots \le {b_n}
那么
(\sum\limits_{1 \le j \le n} { {a_j}} )(\sum\limits_{1 \le k \le n} { {b_k}} ) \le n\sum\limits_{1 \le j \le n} { {a_j}{b_j}}
反之如果
{a_1} \le {a_2} \le \cdots \le {a_n},{b_1} \ge {b_2} \ge \cdots \ge {b_n}
那么
(\sum\limits_{1 \le j \le n} { {a_j}} )(\sum\limits_{1 \le k \le n} { {b_k}} ) \ge n\sum\limits_{1 \le j \le n} { {a_j}{b_j}}
更一般的结论,给定两个序列 ab ,求下面式子最大值与最小值:
\sum\limits_{k = 1}^n { {a_k}{b_{p(k)}}}
其中 p(k)\{ 1,2, \cdots ,n\} 的一个排列。
答案是 b 增序最大,降序最小,至于为什么,下面给出两种证明方法。

方法1

v2-bbebf434fad9c9064374f39e4280be8e_b.jpg

如上图所示, ab 按照递增顺序排列,每个方格的面积代表 a_ib_i 的乘积,记为 s_{ij}
那么上面的求和式其实就是每一行每一列都必须有且只有一块被取。
考虑第一行,如果不取 s_{11} ,取其他的 s_{1j} ,那么第一列也只能取其他的 s_{i1} ,这样的话 s_{ij} 也就取不了了。但是发现
s_{11}+s_{ij} \ge s_{i1}+s_{1j}
并且两种取法影响的行和列都是相同的,这说明了,取 s_{i1}s_{1j} 不如取 s_{11}s_{ij} 。所以 s_{11} 必取,然后第一行第一列就不能取了。剩下的方阵用相同的方法可以得出必取 s_{22}, \cdots ,s_{nn} ,也就是主对角线。
同理最小取法用副对角线可以推出。

方法2

设数列 ab 非单调递减,那么有如下证明:
\begin{array}{l}{S_k} = \sum\limits_{i = 1}^k { {b_i}} ,{ {S'}_k} = \sum\limits_{i = 1}^k { {b_{p(i)}}} \\ \Rightarrow {S_k} \le { {S'}_k}\\ \Rightarrow \\\sum\limits_{i = 1}^n { {a_i}{b_i}} = {S_1}{a_1} - {S_1}{a_2} + {S_2}{a_2} - {S_2}{a_3} + \cdots + {S_n}{a_n}\\ = \sum\limits_{i = 1}^{n - 1} { {S_i}} ({a_i} - {a_{i + 1}}) + {S_n}{a_n}\\ \ge \sum\limits_{i = 1}^{n - 1} { { {S'}_i}} ({a_i} - {a_{i + 1}}) + {S_n}{a_n}\\ = \sum\limits_{i = 1}^n { {a_i}{b_{p(i)}}} \end{array}
反之亦证。

题外话,其实切比雪夫不等式原来是以微积分形式给出的:
如果函数 f(x)g(x) 非单调递减,那么有:
(\int_a^b {f(x)dx} )(\int_a^b {g(x)dx} ) \le (b - a)(\int_a^b {f(x)g(x)dx} )

例题3


S = \sum\limits_{1 \le j < k \le n} {\frac{1}{ {k - j}}}
我将用三种方法来求解这个式子。

方法1

首先将 jk 分开,首先计算对 j 求和:
\begin{array}{l}S = \sum\limits_{1 \le k \le n} {\sum\limits_{1 \le j < k} {\frac{1}{ {k - j}}} } \\ = \sum\limits_{1 \le k \le n} {\sum\limits_{1 \le k - j < k} {\frac{1}{j}} } \\ = \sum\limits_{1 \le k \le n} {\sum\limits_{0 < j \le k - 1} {\frac{1}{j}} } \\ = \sum\limits_{1 \le k \le n} { {H_{k - 1}}} \\ = \sum\limits_{0 \le k < n} { {H_k}} \end{array}

方法2

先计算对 k 求和:
\begin{array}{l}S = \sum\limits_{1 \le j \le n} {\sum\limits_{j < k \le n} {\frac{1}{ {k - j}}} } \\ = \sum\limits_{1 \le j \le n} {\sum\limits_{j < k + j \le n} {\frac{1}{k}} } \\ = \sum\limits_{1 \le j \le n} {\sum\limits_{0 < k \le n - j} {\frac{1}{k}} } \\ = \sum\limits_{1 \le j \le n} { {H_{n - j}}} \\ = \sum\limits_{0 \le j < n} { {H_j}} \end{array}

方法3

按对角线求和:
\begin{array}{l}S = \sum\limits_{1 \le j < k \le n} {\frac{1}{ {k - j}}} \\ = \sum\limits_{1 \le j < k + j \le n} {\frac{1}{k}} \\ = \sum\limits_{1 \le k \le n} {\sum\limits_{1 \le j \le n - k} {\frac{1}{k}} } \\ = \sum\limits_{1 \le k \le n} {\frac{ {n - k}}{k}} \\ = n\sum\limits_{1 \le k \le n} {\frac{1}{k} - } \sum\limits_{1 \le k \le n} 1 \\ = n{H_n} - n\end{array}

由此得到了一个完全不同的表示形式!
所以我们得到了:
\sum\limits_{0 \le j < n} { {H_j}} = n{H_n} - n

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
具体数学:计算机科学基础:第2版》是一本在大学中广泛使用的经典数学教科书.书中讲解了许多计算机科学中用到的数学知识及技巧,教你如何把一个实际问题一步步演化为数学模型,然后通过计算机解决它,特别着墨于算法分析方面.其主要内容涉及和式、整值函数、数论、二项式系数、特殊的数、生成函数、离散概率、渐近式等,都是编程所必备的知识.另外,本书包括了六大类500 多道习题,并给出了所有习题的解答,有助读者加深书中内容的理解 [1] .   《具体数学:计算机科学基础:第2版》面向从事计算机科学、计算数学、计算技术诸方面工作的人员,以及高等院校相关专业的师生. 作者: ronald l. graham(葛立恒):著名数学家,美国加州大学圣迭戈分校计算机与信息科学专业教席(jacobs endowed chair),at&t实验室研究中心荣誉首席科学家,美国数学学会前任主席。   donald e. knuth(高德纳):著名计算机科学家,算法与程序设计技术的先驱者、斯坦福大学计算机系荣休教授、计算机排版系统tex和metafont字体系统的发明人,因诸多成就以及大量富于创造力和具有深远影响的著作(19部书,160篇论文)而誉满全球。   oren patashnik:著名计算机科学家,bibtex的创始人之一,是位于拉荷亚的通信研究中心的研究员。他1976年毕业于耶鲁大学,后来在斯坦福大学师从knuth,1980年就职于贝尔实验室。1985年与leslie lamport合作创建了bibtex(latex的一种工具,用于管理文献、产生文献目录)。 目录: 《具体数学:计算机科学基础:第2版》   第1章  递归问题  1   1.1  河内塔  1   1.2  平面上的直线  4   1.3  约瑟夫问题  7   习题  14   第2章  和式  18   2.1  记号  18   2.2  和式和递归式 21   2.3  和式的处理  25   2.4  多重和式  28   2.5  一般性的方法 35   2.6  有限微积分和 无限微积分 39   2.7  无限和式  47   习题  52   第3章  整值函数 56   3.1  底和顶 56   3.2  底和顶的应用  58   3.3  底和顶的递归式 66   3.4  mod:二元运算 68 3.5 底和顶的和式 72 习题79 第4章数论 85 4.1整除性 85 4.2素数 88 4.3素数的例子 89 4.4阶乘的因子93 4.5互素 96 4.6mod:同余关系 103 4.7独立剩余105 4.8进一步的应用 107 4.9ψ函数和μ函数110 习题119 第5章二项式系数 126 5.1基本恒等式126 5.2基本练习143 5.3处理的技巧154 5.4生成函数164 5.5超几何函数170 5.6超几何变换 180 5.7部分超几何和式186 5.8机械求和法 191 习题 202 第6章特殊的数 214 6.1斯特林数 214 6.2欧拉数 223 6.3调和数 228 6.4调和求和法 233 6.5伯努利数 237 6.6斐波那契数244 6.7连项式 252 习题259 第7章生成函数268 7.1多米诺理论与换零钱 268 7.2基本策略 277 7.3解递归式282 7.4特殊的生成函数 294 7.5卷积 296 7.6指数生成函数 305 7.7狄利克雷生成函数 310 习题312 第8章离散概率 320 8.1定义 320 8.2均值和方差 325 8.3概率生成函数 331 8.4抛掷硬币 336 8.5散列法 344 习题 357 第9章渐近式 367 9.1量的等级 368 9.2大O记号370 9.3O运算规则 376 9.4两个渐近技巧 388 9.5欧拉求和公式393 9.6最后的求和法398 习题410

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法码上来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值